電機狀態(tài)監(jiān)測技術(shù)是一種綜合性的技術(shù),需要綜合運用各種監(jiān)測方法和手段,以實現(xiàn)對電機狀態(tài)的了解和掌握。通過電機狀態(tài)監(jiān)測技術(shù),可以及時發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率,降低維護成本,為企業(yè)創(chuàng)造更大的經(jīng)濟效益。還有一些基于數(shù)學模型和人工智能的故障診斷方法,如基于神經(jīng)網(wǎng)絡的故障診斷、基于支持向量機的故障診斷等。這些方法主要是利用電機的數(shù)學模型或歷史數(shù)據(jù),結(jié)合機器學習、深度學習等人工智能技術(shù),對電機的狀態(tài)進行估計和預測。電機狀態(tài)監(jiān)測是確保電機正常運行和延長其使用壽命的關(guān)鍵技術(shù)之一。通過綜合運用各種監(jiān)測方法和手段,可以及時發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。同時,電機狀態(tài)監(jiān)測技術(shù)還可以為設(shè)備的預測性維護和優(yōu)化運行提供有力支持。通過監(jiān)測設(shè)備振動的頻率和振幅,可以判斷設(shè)備是否正常運行或存在異常。溫州狀態(tài)監(jiān)測系統(tǒng)
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了大的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。上海仿真監(jiān)測設(shè)備電機狀態(tài)監(jiān)測和故障診斷技術(shù),能預報故障發(fā)展趨勢的技術(shù)。它包括識別電機狀態(tài)和預測發(fā)展趨勢兩方面。
為了避免發(fā)生災難性電機故障的可能性,業(yè)界產(chǎn)生對開始退化的感應電機組件進行了早期狀態(tài)監(jiān)測、故障診斷的需求。狀態(tài)監(jiān)測可在其整個使用壽命期間對感應電機的各種部件進行持續(xù)評估。感應電機故障的早期診斷,對即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護和短暫停機的時間建議。電機故障監(jiān)測系統(tǒng),電機狀態(tài)檢測儀。電機故障監(jiān)測系統(tǒng)是采用現(xiàn)代電子技術(shù)和傳感器技術(shù),對電動機運行過程中的各種參數(shù)進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動、噪聲等機械量進行測量;2、通過設(shè)定值比較法確定電機的實際工況;3、根據(jù)設(shè)定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設(shè)備相連實現(xiàn)遠程控制。
電機等振動設(shè)備在運行中,伴隨著一些安全問題,振動數(shù)據(jù)會發(fā)生變化,如果不及時發(fā)現(xiàn),容易導致起火或,造成大量的財產(chǎn)損失,而這些問題具有突發(fā)性和不準確性,難以預知,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數(shù)據(jù),準確可靠,避免后期計算出現(xiàn)較大誤差。本傳感器采用無線通訊方式,低功耗設(shè)計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點。工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉(zhuǎn)窯、傳送設(shè)備等需要振動監(jiān)測的設(shè)備上實時采集振動數(shù)據(jù),然后通過無線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實時在線監(jiān)測出設(shè)備異常,發(fā)出預警,避免事故發(fā)生。產(chǎn)品特點是(1)實時性:系統(tǒng)實時在線監(jiān)測電機等振動參數(shù),避免了由于電機突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動、負載過高和人為錯誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無線傳輸方式,傳感器的安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統(tǒng)采用先進成熟的傳感技術(shù)和無線傳輸技術(shù),抗干擾力強,傳輸距離遠,讀數(shù)準確,可靠性高。刀具健康狀態(tài)監(jiān)測應用越來越廣,用來確保切削工具的性能、壽命和安全性。
基于數(shù)據(jù)的故障檢測與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài)。故障檢測是判斷系統(tǒng)是否處于預期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當于一個二分類任務。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當于一個多分類任務。因此,故障檢測和診斷技術(shù)研究類似于模式識別,分為4個的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術(shù),并且對于不同的任務,沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機器學習的方法結(jié)構(gòu)較淺,在提取信號的高維非線性關(guān)系方面能力有限。監(jiān)測電機主要是通過各種傳感器和技術(shù)手段,實時獲取電機的運行狀態(tài)和性能參數(shù)。南京動力設(shè)備監(jiān)測數(shù)據(jù)
電機監(jiān)測的主要內(nèi)容包括溫度、振動、電流、聲音等方面。溫州狀態(tài)監(jiān)測系統(tǒng)
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、機器學習與傳感器等技術(shù)的成熟,預測性維護技術(shù)應運而生。以各類如電機、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設(shè)備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡,將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設(shè)備的預測性維護。以各類如電機、軸承等設(shè)備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設(shè)備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡,將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設(shè)備預測性維護。溫州狀態(tài)監(jiān)測系統(tǒng)