刀具監(jiān)測技術(shù)主要可以分為兩大類:直接監(jiān)測方法和間接監(jiān)測方法。直接監(jiān)測方法通常是通過使用光學(xué)或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進(jìn)行停機(jī)檢測,時間成本較高,因此不適用于工業(yè)生產(chǎn)。間接監(jiān)測方法則是通過監(jiān)測與刀具磨損或破損密切相關(guān)的傳感器信號,如振動、切削力、電流功率和聲發(fā)射等,并利用建立的數(shù)學(xué)模型間接獲得刀具磨損量或刀具破損狀態(tài)。這種方法可以在機(jī)床加工過程中持續(xù)進(jìn)行,不影響加工進(jìn)度,因此更適用于在線監(jiān)測。其中,基于振動的監(jiān)測法是一種常用的間接監(jiān)測方法。切削過程中,振動信號包含豐富的與刀具狀態(tài)密切相關(guān)的信息。通過測量和分析振動信號,可以有效地監(jiān)測刀具的磨損和破損情況。此外,切削力監(jiān)測法也是一種常用的間接監(jiān)測方法。加工過程中,切削力會隨著刀具狀態(tài)的變化而改變,因此通過監(jiān)測切削力的變化也可以有效地判斷刀具的狀態(tài)??偟膩碚f,刀具監(jiān)測技術(shù)對于確保加工質(zhì)量和提高生產(chǎn)效率具有重要意義。在實際應(yīng)用中,應(yīng)根據(jù)具體的加工需求和條件選擇合適的監(jiān)測方法和技術(shù)。通過監(jiān)測電機(jī)振動的頻率和振幅,可以評估電機(jī)軸承和其他旋轉(zhuǎn)部件的狀況。寧波智能監(jiān)測系統(tǒng)
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動方程等信息, 對于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.常州降噪監(jiān)測臺解決電機(jī)監(jiān)測的難題需要結(jié)合先進(jìn)的傳感技術(shù)、數(shù)據(jù)分析算法、通信技術(shù)以及專業(yè)的工程知識。
設(shè)備狀態(tài)監(jiān)測及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動態(tài)特性通常有一個發(fā)展演變過程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長歷程運(yùn)行中工況和負(fù)載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測模型。動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應(yīng)監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實現(xiàn)動力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上。應(yīng)用于風(fēng)力大電機(jī)、空壓機(jī)等大型動力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測診斷與維護(hù)等專業(yè)化服務(wù)。
電機(jī)狀態(tài)監(jiān)測和振動分析提供加速度計選擇的建議?;谥绷骱头峭浇涣麟姍C(jī)的常見故障。這些常見故障可通過振動分析檢測出來,包括機(jī)械和電氣故障。重點(diǎn)是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個事件的能量可從起始點(diǎn)帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應(yīng)在幾百赫茲到20千赫的寬頻范圍內(nèi)響應(yīng)。對于傳統(tǒng)的機(jī)械故障,如平衡和對準(zhǔn),頻率范圍從約0.2倍的運(yùn)行速度到50-60倍運(yùn)行速度是足夠的。電氣故障需要機(jī)械故障所需的低頻和高頻段。電機(jī)會同時出現(xiàn)機(jī)械和電氣故障,這會導(dǎo)致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機(jī)械故障伴隨著沖擊、摩擦和疲勞,會產(chǎn)生比電氣故障頻率更劇烈的振動,但凹槽除外。凹槽產(chǎn)生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機(jī)械故障,那么它們也將檢測電氣故障。設(shè)備狀態(tài)監(jiān)測是對運(yùn)行中的設(shè)備進(jìn)行振動、噪聲、溫度、相對濕度、環(huán)境壓力等狀態(tài)參數(shù)的定期或連續(xù)監(jiān)測。
在數(shù)控機(jī)床中,刀具的監(jiān)測對于確保加工質(zhì)量和提高生產(chǎn)效率至關(guān)重要。刀具監(jiān)測主要包括刀具磨損監(jiān)測和刀具狀態(tài)監(jiān)測。刀具磨損監(jiān)測可以通過多種方法實現(xiàn),其中一種常用的方法是利用傳感器監(jiān)測切削過程中的物理參數(shù)變化,如切削力、振動和溫度等。當(dāng)?shù)毒吣p到一定程度時,這些物理參數(shù)會發(fā)生變化,通過監(jiān)測這些變化可以間接判斷刀具的磨損情況。此外,還可以采用直接監(jiān)測方法,如使用光學(xué)或觸覺傳感器直接觀察刀具的磨損情況。除了刀具磨損監(jiān)測,刀具狀態(tài)監(jiān)測也是數(shù)控機(jī)床中的重要環(huán)節(jié)。刀具狀態(tài)監(jiān)測可以通過實時監(jiān)測刀具的振動、聲音和溫度等參數(shù),結(jié)合數(shù)據(jù)驅(qū)動的算法構(gòu)建刀具狀態(tài)與這些參數(shù)之間的映射關(guān)系,從而實現(xiàn)對刀具狀態(tài)的準(zhǔn)確監(jiān)測。這種方法可以幫助及時發(fā)現(xiàn)刀具的崩刃、破損和卷刃等失效形式,確保加工質(zhì)量和安全??傊?,數(shù)控機(jī)床中的刀具監(jiān)測技術(shù)對于提高加工質(zhì)量和生產(chǎn)效率具有重要意義。通過實時監(jiān)測刀具的磨損和狀態(tài),可以及時發(fā)現(xiàn)并處理潛在問題,確保加工過程的穩(wěn)定性和可靠性。通過監(jiān)測刀具的振動頻率和振幅,可以評估切削過程中的穩(wěn)定性和刀具的健康狀態(tài)。寧波智能監(jiān)測價格
使用絕緣監(jiān)測設(shè)備來檢測電機(jī)繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導(dǎo)致繞組短路或絕緣擊穿。寧波智能監(jiān)測系統(tǒng)
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了大的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機(jī)在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機(jī)多種參數(shù)監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實時的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進(jìn)行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實時的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。寧波智能監(jiān)測系統(tǒng)