現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)?;透呒夹g(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設(shè)備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認識到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運行,成為設(shè)備管理中的突出任務(wù)。對于單機連續(xù)運行的生產(chǎn)設(shè)備,停機損失巨大的大型機組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會引起公害的設(shè)備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設(shè)備運行時,對它的各個主要部位產(chǎn)生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設(shè)備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計劃,確定設(shè)備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。電機的狀態(tài)監(jiān)測,以采集的電機電流和振動信號為例,可以采用多特征融合的故障診斷方法。上海非標監(jiān)測應(yīng)用
電動機是機械加工中不可或缺的必備工具,電動機在運轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動機運行安全,對電動機運行狀態(tài)進行在線監(jiān)測尤為重要。以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(shù)(振動、噪聲、轉(zhuǎn)速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓練的方法建立狀態(tài)識別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識別方法,判斷電動機運行的狀態(tài),在此基礎(chǔ)上,利用Lab VIEW軟件構(gòu)建可視化監(jiān)測系統(tǒng),將電動機運行參數(shù)及狀態(tài)實時顯示在可視化界面中,完成在線智能監(jiān)測。上海性能監(jiān)測特點盈蓓德科技開發(fā)的監(jiān)測系統(tǒng)實現(xiàn)了對電動機(馬達)、減速機等旋轉(zhuǎn)設(shè)備關(guān)鍵參數(shù)實時監(jiān)測,掌握設(shè)備運行狀態(tài)。
不停機情況下的早期故障在線監(jiān)測問題.這種方式有助于實時評估軸承工作狀態(tài),避免因等待停機檢查而產(chǎn)生延誤、造成經(jīng)濟損失,因此對早期故障的在線檢測越來越受到工業(yè)界的重視.由于在線應(yīng)用場景的制約,與一般故障檢測相比,早期故障在線檢測具有如下需求:1)檢測結(jié)果應(yīng)具有較好的實時性,能盡可能快速準確地識別出早期故障;2)檢測結(jié)果應(yīng)具有較好的魯棒性,能盡可能避免正常狀態(tài)下輕微異常波動的影響,相比于漏報警(現(xiàn)有方法對成熟故障檢測已較成熟),更需避免誤報警;3)檢測模型應(yīng)具有較高的可靠性,在線檢測過程中無需反復(fù)進行閾值設(shè)定和模型優(yōu)化.上述需求對檢測方法提出了新的挑戰(zhàn).在線場景下的早期故障監(jiān)測基本是采用現(xiàn)有的早期故障監(jiān)測方法、直接用于在線環(huán)境, 其通常做法包括: 從振動信號等監(jiān)測數(shù)據(jù)中提取時頻特征、小波特征、包絡(luò)譜特征等早期故障特征, 進而構(gòu)建支持向量機(Support vector machine, SVM)、樸素Bayes分類器、Fisher判別分析、人工神經(jīng)網(wǎng)絡(luò), 單類(One-class) SVM等機器學習模型進行異常檢測,
現(xiàn)代電力系統(tǒng)中發(fā)電機的單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機由于造價昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前和今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預(yù)警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術(shù)可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預(yù)知”維修。這樣既可避免由于設(shè)備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設(shè)備的作用。系統(tǒng)可以實時采集旋轉(zhuǎn)設(shè)備的運行狀態(tài)數(shù)據(jù),上傳到云平臺進行直觀展示、預(yù)警報警、趨勢分析。
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過OPCUA通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過OPCUA采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過OPCUA獲取當前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預(yù)測效果。電機監(jiān)測系統(tǒng)可以防止代價高昂的停機并提高設(shè)備性能。紹興耐久監(jiān)測臺
刀具間接監(jiān)測手段無需在設(shè)備停機或者切削過程間隔中監(jiān)測,實際應(yīng)用機會多。上海非標監(jiān)測應(yīng)用
故障診斷可以使系統(tǒng)在一定工作環(huán)境下根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測狀態(tài)劣化的發(fā)展趨勢等。電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設(shè)備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應(yīng)和標準響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術(shù)對電機設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預(yù)測;3、溫度檢測方法,采用各種溫度測量方法對電機設(shè)備各個部位的溫升進行監(jiān)測,電機的溫升與各種故障現(xiàn)象相關(guān);4、振動與噪聲診斷法,通過對電機設(shè)備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產(chǎn)生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關(guān)部位元件的破壞程度。上海非標監(jiān)測應(yīng)用
上海盈蓓德智能科技有限公司成立于2019-01-02,同時啟動了以盈蓓德,西門子為主的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產(chǎn)業(yè)布局。旗下盈蓓德,西門子在電工電氣行業(yè)擁有一定的地位,品牌價值持續(xù)增長,有望成為行業(yè)中的佼佼者。我們在發(fā)展業(yè)務(wù)的同時,進一步推動了品牌價值完善。隨著業(yè)務(wù)能力的增長,以及品牌價值的提升,也逐漸形成電工電氣綜合一體化能力。上海盈蓓德智能科技有限公司業(yè)務(wù)范圍涉及從事智能科技、電子科技、計算機科技領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)服務(wù)、技術(shù)咨詢、技術(shù)轉(zhuǎn)讓,計算機網(wǎng)絡(luò)工程,計算機硬件開發(fā),電子產(chǎn)品、計算機軟硬件、辦公設(shè)備、機械設(shè)備(除特種設(shè)備)銷售。【依法須經(jīng)批準的項目,經(jīng)相關(guān)部門批準后方可開展經(jīng)營活動】等多個環(huán)節(jié),在國內(nèi)電工電氣行業(yè)擁有綜合優(yōu)勢。在智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等領(lǐng)域完成了眾多可靠項目。