動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來提高故障早期辨識(shí)能力。動(dòng)力裝備全生命周期性能優(yōu)化服務(wù)方面:提供了轉(zhuǎn)子全息動(dòng)平衡快速響應(yīng)與服務(wù)支持、以全息譜為**的失衡故障確診、動(dòng)力裝備轉(zhuǎn)子和軸系平衡配重方案優(yōu)化?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)、氮壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測(cè)與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測(cè)診斷與維護(hù)等專業(yè)化服務(wù)。盈蓓德科技可以搭建造價(jià)低廉,性能穩(wěn)定,安裝方便,功能實(shí)用,使用簡(jiǎn)單,維護(hù)工作量少的振動(dòng)監(jiān)測(cè)系統(tǒng)。寧波監(jiān)測(cè)數(shù)據(jù)
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的系統(tǒng)狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的**知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。無錫非標(biāo)監(jiān)測(cè)介紹盈蓓德科技可以提供更經(jīng)濟(jì)更可靠的旋轉(zhuǎn)設(shè)備健康狀態(tài)監(jiān)測(cè)方案。
遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測(cè),能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計(jì)算,通過對(duì)歷史數(shù)據(jù)趨勢(shì)分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計(jì)分析等大數(shù)據(jù)分析,對(duì)設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評(píng)判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對(duì)電源電壓、設(shè)備狀態(tài)的自檢,分析計(jì)量故障等信息,及時(shí)發(fā)現(xiàn)計(jì)量異?!,F(xiàn)場(chǎng)監(jiān)測(cè)箱開門、斷電、設(shè)備運(yùn)行等異常信息也能夠主動(dòng)發(fā)送報(bào)警信息到監(jiān)測(cè)中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時(shí)性和可靠性。
物聯(lián)網(wǎng)技術(shù)為設(shè)備狀態(tài)監(jiān)測(cè)診斷帶來了設(shè)備狀態(tài)無線監(jiān)測(cè)?高速數(shù)據(jù)傳輸?邊緣計(jì)算和精細(xì)化診斷分析等先進(jìn)技術(shù)。本項(xiàng)目相關(guān)的狀態(tài)監(jiān)測(cè)技術(shù)是要解決海量終端(傳感器數(shù)據(jù))的聯(lián)接、管理、實(shí)時(shí)分析處理。關(guān)鍵技術(shù)包含海量數(shù)據(jù)的采集和傳輸技術(shù)、信號(hào)處理技術(shù)和邊緣計(jì)算技術(shù)。對(duì)設(shè)備進(jìn)行診斷的目的,是了解設(shè)備是否在正常狀態(tài)下運(yùn)轉(zhuǎn),為此需測(cè)定有關(guān)設(shè)備的各種量,即信號(hào)。如果捕捉到的信號(hào)能直接反映設(shè)備的問題,如溫度的測(cè)值,則與設(shè)備正常狀態(tài)偽規(guī)定值相比較即可。但測(cè)到的聲波或振動(dòng)信號(hào)一般都伴有雜音和其他干擾,放大多需濾波?;剞D(zhuǎn)機(jī)械的振動(dòng)和噪聲就是一例。一般測(cè)到的波形和數(shù)值沒有一定規(guī)則,需要把表示信號(hào)特征的量提取出來,以此數(shù)值和信號(hào)圖象來表示測(cè)定對(duì)象的狀態(tài)就是信號(hào)處理技術(shù)其次邊緣計(jì)算與云計(jì)算協(xié)同工作。云計(jì)算聚焦非實(shí)時(shí)、長(zhǎng)周期數(shù)據(jù)的大數(shù)據(jù)分析,能夠在周期性維護(hù)、故障隱患綜合識(shí)別分析,產(chǎn)品健康度檢查等領(lǐng)域發(fā)揮特長(zhǎng)。邊緣計(jì)算聚焦實(shí)時(shí)、短周期數(shù)據(jù)的分析,能更好地支撐故障的實(shí)時(shí)告警,快速識(shí)別異常,毫秒級(jí)響應(yīng);此外,兩者還存在緊密的互動(dòng)協(xié)同關(guān)系。邊緣計(jì)算既靠近設(shè)備,更是云端所需數(shù)據(jù)的采集單元,可以更好地服務(wù)于云端的大數(shù)據(jù)分析。盈蓓德科技開發(fā)的監(jiān)測(cè)系統(tǒng)實(shí)現(xiàn)了對(duì)電動(dòng)機(jī)(馬達(dá))、減速機(jī)等旋轉(zhuǎn)設(shè)備關(guān)鍵參數(shù)實(shí)時(shí)監(jiān)測(cè),掌握設(shè)備運(yùn)行狀態(tài)。
電動(dòng)機(jī)是機(jī)械加工中不可或缺的必備工具,電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。以三相異步電動(dòng)機(jī)為研究對(duì)象,采用傳感器獲取電動(dòng)機(jī)運(yùn)行中的重要參數(shù)(振動(dòng)、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動(dòng)機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識(shí)別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識(shí)別方法,判斷電動(dòng)機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用Lab VIEW軟件構(gòu)建可視化監(jiān)測(cè)系統(tǒng),將電動(dòng)機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測(cè)。非接觸式的刀具監(jiān)測(cè)系統(tǒng)采用噪聲特征收集技術(shù),實(shí)時(shí)收集、分析刀具的噪聲,解決傳感器安裝限制。南京NVH監(jiān)測(cè)方案
新型電機(jī)故障監(jiān)測(cè)系統(tǒng)借用物聯(lián)網(wǎng)、人工智能、邊緣計(jì)算等技術(shù),提前預(yù)判設(shè)備故障。寧波監(jiān)測(cè)數(shù)據(jù)
目前設(shè)備狀態(tài)監(jiān)測(cè)及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過程。需揭示劣化過程及故障變化演變規(guī)律及發(fā)展特點(diǎn),分析故障產(chǎn)生機(jī)理、發(fā)展原因和發(fā)展模式,構(gòu)建劣化演變機(jī)械動(dòng)態(tài)特性模型。(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢(shì)特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長(zhǎng)歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號(hào)能量變化,故障趨勢(shì)信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測(cè)模型。若提取到敏感特征分量因子及模式,有望實(shí)現(xiàn)典型部件及部位分析。寧波監(jiān)測(cè)數(shù)據(jù)
上海盈蓓德智能科技有限公司辦公設(shè)施齊全,辦公環(huán)境優(yōu)越,為員工打造良好的辦公環(huán)境。在盈蓓德科技近多年發(fā)展歷史,公司旗下現(xiàn)有品牌盈蓓德,西門子等。公司以用心服務(wù)為重點(diǎn)價(jià)值,希望通過我們的專業(yè)水平和不懈努力,將從事智能科技、電子科技、計(jì)算機(jī)科技領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)服務(wù)、技術(shù)咨詢、技術(shù)轉(zhuǎn)讓,計(jì)算機(jī)網(wǎng)絡(luò)工程,計(jì)算機(jī)硬件開發(fā),電子產(chǎn)品、計(jì)算機(jī)軟硬件、辦公設(shè)備、機(jī)械設(shè)備(除特種設(shè)備)銷售?!疽婪毥?jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營(yíng)活動(dòng)】等業(yè)務(wù)進(jìn)行到底。上海盈蓓德智能科技有限公司主營(yíng)業(yè)務(wù)涵蓋智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng),堅(jiān)持“質(zhì)量保證、良好服務(wù)、顧客滿意”的質(zhì)量方針,贏得廣大客戶的支持和信賴。