YOLO算法的關鍵技術在YOLO算法中,有幾個關鍵技術對其性能起著重要作用。首先是使用卷積神經網絡提取圖像特征,其中引入了一些先進的網絡結構,如Darknet。其次是使用AnchorBox來提高目標定位的精度。此外,YOLO算法還引入了特征金字塔網絡和多尺度預測等技術,以處理不同大小的目標。YOLO算法在實時目標檢測和跟蹤中的應用YOLO算法在實時目標檢測和跟蹤領域取得了明顯的成果。它不僅在檢測速度上遠超傳統(tǒng)方法,而且在目標定位和類別預測準確性上也表現(xiàn)出色。因此,YOLO算法在許多應用中得到了廣泛應用,如視頻監(jiān)控、自動駕駛和物體識別等。RK3399處理板如何實現(xiàn)目標的識別及跟蹤?青??孔V的目標跟蹤
如今,無人機在我們生活中的應用越來越廣。例如無人機巡檢安防領域,無人機能夠到達人無法觸及的一些角度,能夠很大程度上擴大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數相機都是可見光相機,在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。高效目標跟蹤聯(lián)系方式如何實現(xiàn)穩(wěn)定的目標跟蹤?
通常,遮擋可以分為三種情況:目標間遮擋、背景遮擋、自遮擋。對于目標之間的相互遮擋,可以選擇根據目標的位置和目標特征的先驗知識來處理這一問題。而對于場景結構的導致的部分遮擋此方法則難以判斷,因為難以辨認究竟是目標形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態(tài)建模方法對運動目標進行,并在目標發(fā)生遮擋時,預測目標的可能位置,一直到目標重新出現(xiàn)時再修正它的位置??梢杂每柭鼮V波器來實現(xiàn)估計目標的位置,也可以用粒子濾波對目標做狀態(tài)估計。
由于侵入的目標的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復雜,只利用一個單幀圖像就找出移動的目標是非常困難的。然而,目標的運動導致了其運動時間內,監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設置的環(huán)境較為惡劣,圖像傳輸的距離較遠,從而導致圖像的信噪比不高,因此采用突出目標的方法,需要在配準的前提下進行多幀能量積累和噪聲抑制。在該技術中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關系是什么關系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數關系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標是研究的方向。用于安防監(jiān)控及狀態(tài)監(jiān)測的攝像頭數量的飛速發(fā)展。
從軟件的角度來看,整個視頻跟蹤系統(tǒng)主要是由電視攝像機及控制、圖像獲取模塊、圖像顯示模塊、數據庫,運動檢測,目標跟蹤,報警輸入和人機接口模塊等組成的。視覺計算模塊是視頻跟蹤系統(tǒng)的重點,是實現(xiàn)目標檢測和跟蹤的關鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標的檢測和跟蹤是緊密結合的。檢測是跟蹤的前因,并為跟蹤提供了目標的信息(如目標的位置,大小,模式和速度估計等),而跟蹤則是檢測的延續(xù),實時利用檢測得到的知識去驗證目標的存在。智能目標識別及追蹤,讓目標無處可藏。放心目標跟蹤要多少錢
慧視AI算法是無人設備的“眼睛”。青??孔V的目標跟蹤
近年來,我國多地智慧城市建設取得較好的成效,諸多創(chuàng)新技術和解決方案得到廣泛應用。而在智慧停車方面,許多公共場所也開始逐步落地應用。一車一桿的系統(tǒng),智能識別進出入車輛,控制車輛進出入,統(tǒng)計車位空缺數,在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機箱,該機箱集攝像頭、圖像處理板、顯示屏、內存卡等設備于一體,其中圖像處理板內置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進行快速又高精度的信息識別,并上傳數據到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。青??孔V的目標跟蹤