2010年以前,目標跟蹤領域大部分采用一些經典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標進行建模,比如利用目標的顏色分布來描述目標,然后計算目標在下一幀圖像上的概率分布,從而迭代得到局部密集的區(qū)域。Meanshift適用于目標的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進方法也一直適用至今。成都RK3399智能跟蹤板提供商。陜西放心目標跟蹤
目標運動估計是根據(jù)目標在過去的位置對目標的運動規(guī)律加以總結,并以此對目標將來的運動狀態(tài)進行預測。正確的預測,可以縮小匹配的計算區(qū)域,大幅的降低匹配計算量。在視頻跟蹤系統(tǒng)中由于被跟蹤的目標處于運動狀態(tài),為了把目標始終保持在攝像機視野之內,必須對攝像機加以控制。在實際應用中,攝像機被固定在云臺上,云臺本身不做平移運動,但可以控制云臺進行水平擺動和上下俯仰,從而帶動攝像機做相應運動。所以,對攝像機的控制就是對云臺的控制。可靠目標跟蹤售后服務工程師以RK3399PRO核心板為基礎進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。
如今,無人機在我們生活中的應用越來越廣。例如無人機巡檢安防領域,無人機能夠到達人無法觸及的一些角度,能夠很大程度上擴大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機都是可見光相機,在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。
視覺目標跟蹤是指對圖像序列中的運動目標進行檢測、提取、識別和跟蹤,獲得運動目標的運動參數(shù),如位置、速度、加速度和運動軌跡等,從而進行下一步的處理與分析,實現(xiàn)對運動目標的行為理解,以完成更高一級的檢測任務。根據(jù)跟蹤目標的數(shù)量可以將跟蹤算法分為單目標跟蹤與多目標跟蹤。相比單目標跟蹤而言,多目標跟蹤問題更加復雜和困難。多目標跟蹤問題需要考慮視頻序列中多個單獨目標的位置、大小等數(shù)據(jù),多個目標各自外觀的變化、不同的運動方式、動態(tài)光照的影響以及多個目標之間相互遮擋、合并與分離等情況均是多目標跟蹤問題中的難點。智能目標識別及追蹤,讓目標無處可藏。
實際上,跟蹤和檢測是分不開的,比如傳統(tǒng)TLD框架使用的在線學習檢測器,或KCF密集采樣訓練的檢測器,以及當前基于深度學習的卷積特征跟蹤框架。一方面,跟蹤能夠保證速度上的需要,而檢測能夠有效地修正跟蹤的累計誤差。不同的應用場合對跟蹤的要求也不一樣,比如特定目標跟蹤中的人臉跟蹤,在跟蹤成功率、準確度和魯棒性方面都有具體的要求。另外,跟蹤的另一個分支是多目標跟蹤(MultipleObjectTracking)。多目標跟蹤并不是簡單的多個單目標跟蹤,因為它不僅涉及到各個目標的持續(xù)跟蹤,還涉及到不同目標之間的身份識別、自遮擋和互遮擋的處理,以及跟蹤和檢測結果的數(shù)據(jù)關聯(lián)等。如何實現(xiàn)目標識別及跟蹤?新疆目標跟蹤檢測
慧視RK3588圖像處理板能實現(xiàn)24小時、無間隙信息化監(jiān)控。陜西放心目標跟蹤
YOLO單卷積神經網絡在一次評價中直接從全圖中預測多個boundingboxes和類概率,在全圖上訓練并直接優(yōu)化檢測性能,同時學習目標的泛化表示。然而,YOLO對邊界框預測施加了嚴格的空間約束,限制了模型可以預測的相鄰項目的數(shù)量。成群出現(xiàn)的小物件,如鳥類,對于此模型也同樣有問題。fasterR-CNN,一個由全深度CNN組成的單一統(tǒng)一對象識別網絡,提高了檢測的準確性和效率,同時減少了計算開銷。該模型集成了一種在區(qū)域方案微調之間交替的訓練方法,使得統(tǒng)一的、基于深度學習的目標識別系統(tǒng)能夠以接近實時的幀率運行,然后在保持固定目標的同時微調目標檢測。陜西放心目標跟蹤