SPI驗證目的:1.印刷錫膏破壞實驗驗證目的是為了降低SPI對錫膏范圍值檢測誤報比例降低、提高人員誤判可能性、發(fā)揮設(shè)備應(yīng)該發(fā)揮的功能、提升設(shè)備檢出直通率、提高生產(chǎn)效率。2.同時針對每次客戶稽查SMT時所提出的’如何提高SPI直通率‘減少人員判定等問題,作出實際驗證依據(jù),便于后續(xù)客戶稽查時,提出此問題時可以有憑有據(jù)回復(fù)。SPI檢測機的功能:SPI檢測機內(nèi)錫膏測厚的鐳射裝置,利用光學(xué)影像來檢查品質(zhì),如若有不正確印刷的PCB通過時,SPI檢測機就會響起警報,以便及時發(fā)現(xiàn)錫膏印刷是否有偏移、高度偏差、缺陷破損等,在貼片前進行糾正和消除,將不良率降到較低。應(yīng)用于3DSPI/AOI領(lǐng)域的DLP結(jié)構(gòu)光投影模塊編碼結(jié)構(gòu)光光源蓄勢待發(fā)在2D視覺時代,光源主要起到什么作用?肇慶國內(nèi)SPI檢測設(shè)備設(shè)備
兩種技術(shù)類別的3D-SPI(3D錫膏檢測機)性能比較:目前,主流的3D-SPI(3D錫膏檢測機)設(shè)備主要使用兩類技術(shù):基于結(jié)構(gòu)光相位調(diào)制輪廓測量技術(shù)(PMP)與基于激光測量技術(shù)(Laser)。相位調(diào)制輪廓測量技術(shù)(簡稱PMP),是一種基于結(jié)構(gòu)光柵正弦運動投影,離散相移獲取多幅被照射物光場圖像,再根據(jù)多步相移法計算出相位分布,利用三角測量等方法得到高精度的物體外形輪廓和體積測量結(jié)果。PMP-3D-SPI可使用400萬像素或者的高速工業(yè)相機,實現(xiàn)大FOV范圍內(nèi)的錫膏三維測量以及錫膏高度方向上0.36um的解析度,在保證高速測量的同時,大幅度的提高測量精度。此外,PMP-3D-SPI可在視覺部分安裝多個投影頭,有效克服了錫膏3D測量的陰影效應(yīng)。激光測量技術(shù),采用傳統(tǒng)的激光光源投影出線狀光源,使相PSD或工業(yè)相機獲取圖像。激光3D-SPI使用飛行拍攝模式,在激光投影勻速移動的過程中一次性獲取錫膏的3D與2D信息。激光3D-SPI具有很快的檢測速度,但是不能在保證高精度的同時實現(xiàn)高速;激光光源響應(yīng)好,不易受外界光照影響,此外,因為激光技術(shù)為傳統(tǒng)的模擬技術(shù),激光3D-SPI的高分辨率為1um或2um。在目前的SMT設(shè)備市場中,使用激光測量類的廠商較多,更為先進的PMP-3D測量只有少數(shù)高級SPI在使用江門國內(nèi)SPI檢測設(shè)備技術(shù)參數(shù)PCBA工藝常見檢測設(shè)備SPI檢測。
3D結(jié)構(gòu)光(PMP)錫膏檢測設(shè)備(SPI)及其DLP投影光機和相機一、SPI的分類:從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結(jié)構(gòu)光柵PMP技術(shù)。1)激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術(shù)因為原理比較簡單,技術(shù)比較成熟,但是因為其本身的技術(shù)局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復(fù)性要求不高的錫厚測試儀,桌上型SPI等。2)結(jié)構(gòu)光柵型SPIPMP,又稱PSP(PhaseShiftProfilometry)技術(shù)是一種基于正弦條紋投影和位相測量的光學(xué)三維面形測量技術(shù)。通過獲取全場條紋的空間信息與一個條紋周期內(nèi)相移條紋的時序信息,來完成物體三維信息的重建。由于其具有全場性、速度快、高精度、自動化程度高等特點,這種技術(shù)已在工業(yè)檢測、機器視覺、逆向工程等領(lǐng)域獲得廣泛應(yīng)用。目前大部分的在線SPI設(shè)備都已經(jīng)升級到此種技術(shù)。但是它采用的離散相移技術(shù)要求有精確的正弦結(jié)構(gòu)光柵與精確的相移,在實際系統(tǒng)中不可避免地存在著光柵圖像的非正弦化,相移誤差與隨機誤差,它將導(dǎo)致計算位相和重建面形的誤差。雖然已經(jīng)出現(xiàn)了不少算法能降低線性相移誤差,但要解決相移過程中的隨機相移誤差問題,還存在一定的困難。
莫爾條紋技術(shù)特點:1874年,科學(xué)家瑞利將莫爾條紋圖案作為一種測試手段,根據(jù)條紋形態(tài)和評價光柵尺各線紋間的間距的均勻性,從而開創(chuàng)了莫爾測試技術(shù)。隨著光刻技術(shù)和光電子技術(shù)水平的提高,莫爾技術(shù)獲得極快的發(fā)展,在位移測試,數(shù)字控制,伺服跟蹤,運動控制等方面有了較廣的應(yīng)用。目前該技術(shù)應(yīng)用在SMT的錫膏精確測量中,有著很好的優(yōu)勢。莫爾條紋(即光柵)有兩個非常重要的特性:1).判向性:當(dāng)指示光柵對于固定不動主光柵左右移動時,莫爾條紋將沿著近于柵向的方向上移動,可以準(zhǔn)確判定光柵移動的方向。2).位移放大作用:當(dāng)指示光柵沿著與光柵刻度垂直方向移動一個光柵距D時,莫爾條紋移動一個條紋間距B,當(dāng)兩個等間距光柵之間的夾角θ較小時,指示光柵移動一個光距D,莫爾條紋就移動KD的距離。這樣就可以把肉眼無法的柵距位移變成了清晰可見的條紋位移,實驗了高靈敏的位移測量。這兩點技術(shù)應(yīng)用在SPI中,就體現(xiàn)了莫爾條紋技術(shù)測量的穩(wěn)定性和精細(xì)性。AOI是對器件貼裝展開檢測和對焊點展開檢測。
SPI導(dǎo)入帶來的收益在線型3D錫膏檢測設(shè)備(SPI)1)據(jù)統(tǒng)計,SPI的導(dǎo)入可將原先成品PCB不合格率有效降低85%以上;返修、報廢成本大幅降低90%以上,出廠產(chǎn)品質(zhì)量顯著提高。SPI與AOI聯(lián)合使用,通過對SMT生產(chǎn)線實時反饋與優(yōu)化,可使生產(chǎn)質(zhì)量更趨平穩(wěn),大幅縮短新產(chǎn)品導(dǎo)入時必須經(jīng)歷的不穩(wěn)定試產(chǎn)階段,相應(yīng)成本損耗更為節(jié)省。2)可大幅降低AOI關(guān)于焊錫的誤判率,從而提高直通率,有效節(jié)約人為糾錯的人力、時間成本。據(jù)統(tǒng)計,當(dāng)前成品PCB中74%的不合格處與焊錫有直接關(guān)系,13%有間接關(guān)系。SPI通過3D檢測手段有效彌補了傳統(tǒng)檢測方法的不足3)部分PCB上元器件如BGA、CSP、PLCC芯片等,由于自身特性所帶來的光線遮擋,貼片回流后AOI無法對其進行檢測。而SPI通過過程控制,極大程度減少了爐后這些器件的不良情況。4)伴隨電子產(chǎn)品日益精密化與焊錫無鉛化的趨勢,貼片元件越來越微型,因此,焊錫膏印刷質(zhì)量正變得越來越重要。SPI能有效確保良好的錫膏印刷質(zhì)量,大幅減少可能存在的成品不良率。5)作為質(zhì)量過程控制的手段,能在回流焊接前及時發(fā)現(xiàn)質(zhì)量隱患,因此幾乎沒有返修成本與報廢的可能,有效節(jié)約了成本;詳情歡迎來電咨詢。AOI在SMT各工序在SMT中的應(yīng)用。SPI可以接多少個設(shè)備
SPI為什么會逐漸取代人工目檢?肇慶國內(nèi)SPI檢測設(shè)備設(shè)備
3分鐘了解智能制造中的AOI檢測技術(shù)AOI檢測技術(shù)具有自動化、非接觸、速度快、精度高、穩(wěn)定性高等優(yōu)點,能夠滿足現(xiàn)代工業(yè)高速、高分辨率的檢測要求,在手機、平板顯示、太陽能、鋰電池等諸多行業(yè)應(yīng)用較廣。智能制造中的AOI檢測技術(shù)AOI集成了圖像傳感技術(shù)、數(shù)據(jù)處理技術(shù)、運動控制技術(shù),在產(chǎn)品生產(chǎn)過程中,可以執(zhí)行測量、檢測、識別和引導(dǎo)等一系列任務(wù)。簡單地說,AOI模擬和拓展了人類眼、腦、手的功能,利用光學(xué)成像方法模擬人眼的的視覺成像功能,用計算機處理系統(tǒng)代替人腦執(zhí)行數(shù)據(jù)處理,隨后把結(jié)果反饋給執(zhí)行或輸出模塊。以AOI檢測應(yīng)用較廣的PCB行業(yè)為例,中低端AOI檢測設(shè)備的誤判過篩率約為70%,即捕捉到的不良品中其實有70%的成品是合格的。擁有了訓(xùn)練成熟的AI技術(shù)加持后,AIAOI檢測系統(tǒng)不斷學(xué)習(xí),能夠自行定義瑕疵范圍,進一步有效判別未知的瑕疵圖像。AI視覺辨識技術(shù)能輔助AOI檢測能夠大幅提升檢測設(shè)備的辨識正確率,有效降低誤判過篩率,加速生產(chǎn)線速度。這就是智能制造。肇慶國內(nèi)SPI檢測設(shè)備設(shè)備