聚合酶鏈?zhǔn)椒磻?yīng)的步驟:標(biāo)準(zhǔn)的PCR過程分為三步:DNA變性:(90℃-96℃):雙鏈DNA模板在熱作用下,氫鍵斷裂,形成單鏈DNA;退火:(60℃-65℃):系統(tǒng)溫度降低,引物與DNA模板結(jié)合,形成局部雙鏈。延伸:(70℃-75℃):在Taq酶(在72℃左右,活性很好)的作用下,以dNTP為原料,從引物的3′端開始以從5′→3′端的方向延伸,合成與模板互補(bǔ)的DNA鏈。每一循環(huán)經(jīng)過變性、退火和延伸,DNA含量即增加一倍?,F(xiàn)在有些PCR因?yàn)閿U(kuò)增區(qū)很短,即使Taq酶活性不是很好也能在很短的時(shí)間內(nèi)復(fù)制完成,因此可以改為兩步法,即退火和延伸同時(shí)在60℃-65℃間進(jìn)行。像所有酶一樣,DNA聚合酶也容易出錯(cuò),這反過來會(huì)導(dǎo)致產(chǎn)生的PCR片段發(fā)生突變。常州微量熒光PCR
聚合酶鏈?zhǔn)椒磻?yīng)(PCR)是一種用于放大擴(kuò)增特定的DN段的分子生物學(xué)技術(shù),它可看作是生物體外的特殊DNA復(fù)制,PCR的很大特點(diǎn)是能將微量的DNA大幅增加。基因工程:生物材料——mRNA,將mRNA反轉(zhuǎn)錄后成為cDNA(互補(bǔ)DNA),通過PCR擴(kuò)增。這里不是信使RNA,而是病毒RNA作為生物材料進(jìn)行PCR聚合酶鏈?zhǔn)椒磻?yīng)。作用——體外將病毒RNA分子結(jié)構(gòu)進(jìn)行修飾,其次將目的基因?qū)胧荏w細(xì)胞中,進(jìn)行病。RNA的表現(xiàn)形式:RNA病毒一般由蛋白質(zhì)和RNA組成,現(xiàn)在看下RNA——一條核糖核酸長(zhǎng)鏈,核糖核酸長(zhǎng)鏈由無數(shù)個(gè)核糖核苷酸分子構(gòu)成,其中,一個(gè)核糖核苷酸分子由一分子磷酸、一分子核糖(一種五碳糖)、一分子含氮堿基構(gòu)成。脫氧核糖核苷酸分子比核糖核苷酸分子少了一個(gè)O分子。常州微量熒光PCRPCR反應(yīng)的特異性決定因素為:引物與模板DNA特異正確的結(jié)合。
聚合酶鏈?zhǔn)椒磻?yīng)準(zhǔn)備:引物內(nèi)部不應(yīng)出現(xiàn)互補(bǔ)序列。兩個(gè)引物之間不應(yīng)存在互補(bǔ)序列,尤其是避免3 ′端的互補(bǔ)重疊。引物與非特異擴(kuò)增區(qū)的序列的同源性不要超過70%,引物3′末端連續(xù)8個(gè)堿基在待擴(kuò)增區(qū)以外不能有完全互補(bǔ)序列,否則易導(dǎo)致非特異性擴(kuò)增。引物3‘端的堿基,特別是很末及倒數(shù)第二個(gè)堿基,應(yīng)嚴(yán)格要求配對(duì),很好選擇是G和C。引物的5′端可以修飾。如附加限制酶位點(diǎn),引入突變位點(diǎn),用生物素、熒光物質(zhì)、地高辛標(biāo)記,加入其它短序列,包括起始密碼子、終止密碼子等。
聚合酶鏈反應(yīng)的常見問題分析與解決方法:MgCl2濃度過高。可適當(dāng)降低其用量。模板量過多。質(zhì)粒DNA的用量應(yīng)<50 ng,而基因組DNA則應(yīng)<200 ng。引物濃度不夠優(yōu)化。對(duì)引物進(jìn)行梯度稀釋重復(fù)PCR反應(yīng)。循環(huán)次數(shù)過多;增加模板量減少循環(huán)次數(shù)至30,縮短退火時(shí)間及延伸時(shí)間,或改用二種溫度的PCR循環(huán)。退火溫度過低。電泳體系有問題:凝膠中緩沖液和電泳緩沖液濃度相差太大;凝膠沒有凝固好;瓊脂糖質(zhì)量差。若為PCR試劑盒則可能:由于運(yùn)輸儲(chǔ)存不當(dāng)引起試劑盒失效;試劑盒本身質(zhì)量有問題,如引物選擇、循環(huán)參數(shù)等選擇不當(dāng)。降解的陳舊模板擴(kuò)增也易產(chǎn)生涂布。逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(逆轉(zhuǎn)錄-聚合酶鏈反應(yīng)):用于從RNA中擴(kuò)增DNA。
聚合酶鏈?zhǔn)椒磻?yīng):RNA和DNA的五碳糖,前者比后者多了一個(gè)O,由于多出來的O原子造成了RNA和DNA的堿基不同,即O原子造成U和T的不同,U分子化學(xué)式C4H4N2O2,T胸腺嘧啶化學(xué)式C5H6N2O2,現(xiàn)在將兩個(gè)分子式進(jìn)行對(duì)比,U比T多了CH2,結(jié)合前面的核糖區(qū)別,還有一個(gè)O分子,其余結(jié)構(gòu)相同,那么O和CH2之間的聯(lián)系是什么?是什么導(dǎo)致DNA和RNA的區(qū)別是RNA比DNA多了O和CH2?或者說如何將病毒的堿基中U變成DNA堿基中的T?若從結(jié)構(gòu)上說,直接從U中加入一個(gè)CH2,得到了T,這里面介入化學(xué)鍵的斷裂和重組,但是這樣一來的話,即使U變成了T,但是核糖依舊是RNA比DNA多了一個(gè)O分子,只是此時(shí)結(jié)構(gòu)是某分子=核糖(C4H9O4CHO)+堿基(A T G C),形成了RNA的五碳糖+DNA的堿基這種分子了。此時(shí)將這種分子導(dǎo)入受體細(xì)胞(亦或者蛋白質(zhì))中,表達(dá)的性質(zhì)一定不同于病毒表達(dá)的性質(zhì)?,F(xiàn)在有些PCR因?yàn)閿U(kuò)增區(qū)很短,即使Taq酶活性不是很好也能在很短的時(shí)間內(nèi)復(fù)制完成。常州微量熒光PCR
聚合酶鏈反應(yīng)可以用于分析病癥、微生物或其他疾病狀態(tài)中基因表達(dá)水平的變化。常州微量熒光PCR
聚合酶鏈?zhǔn)椒磻?yīng)(PCR)是一種用于放大擴(kuò)增特定的DN段的分子生物學(xué)技術(shù),它可看作是生物體外的特殊DNA復(fù)制,PCR的很大特點(diǎn)是能將微量的DNA大幅增加。因此,無論是化石中的古生物、歷史人物的殘骸,還是幾十年前兇殺案中兇手所遺留的毛發(fā)、皮膚或血液,只要能分離出一丁點(diǎn)的DNA,就能用PCR加以放大,進(jìn)行比對(duì)。這也是“微量證據(jù)”的威力之所在。由1983年美國(guó)首先提出設(shè)想,1985年由其發(fā)明了聚合酶鏈反應(yīng),即簡(jiǎn)易DNA擴(kuò)增法,意味著PCR技術(shù)的真正誕生。到2013年,PCR已發(fā)展到第三代技術(shù)。常州微量熒光PCR