越來越多的學(xué)者投入研究。文獻(xiàn)報道氧化鋁陶瓷粉末中添加適量大小相當(dāng)?shù)墓腆w潤滑劑(如石墨、MoS2、WS2等),通過等離子噴涂制備自潤滑或自愈合涂層,在高溫下填充封閉了涂層中的裂紋與孔隙,以滿足高溫潤滑或自愈合效果。4結(jié)語與展望本文對等離子噴涂制備氧化鋁、Al2O3-TiO2、納米氧化鋁復(fù)合涂層進(jìn)行綜述,簡述了激光重熔對等離子噴涂氧化鋁涂層的影響,對研究其他陶瓷材料有很好的借鑒作用?;谘趸X陶瓷涂層,地添加各類組分,改進(jìn)涂層質(zhì)量,為等離子噴涂技術(shù)和激光重熔技術(shù)制備特殊功能涂層提供可靠的工藝手段。隨著納米材料和激光重熔深入研究,對改善等離子噴涂氧化鋁涂層的**和性能具有重大意義,預(yù)計在航空航天、機械化工、鋼鐵冶金等工業(yè)領(lǐng)域應(yīng)用會愈來愈。未來,它在新能源、環(huán)保、生物醫(yī)學(xué)等領(lǐng)域?qū)l(fā)揮更加重要的作用。山東氧化鋁陶瓷批發(fā)價
上述氧化鋁陶瓷以納米級氧化鋁粉末為基體,通過添加納米zro2為增韌相,提高氧化鋁的力學(xué)性能和斷裂韌性。此外,通過添加氧化鎂、氧化鈣、氧化鈉、氧化鉿及氧化鉀為燒結(jié)助劑,并對混合成型后的陶瓷坯體先在1400℃~1500℃下進(jìn)行常壓燒結(jié),實現(xiàn)氧化鋁陶瓷的均勻致密化和控制氧化鋁的晶粒尺寸,然后在1300℃~1350℃、100mpa~200mpa下進(jìn)行熱等靜壓燒結(jié),以得到斷裂韌性較高的氧化鋁陶瓷。附圖說明圖1為一實施方式的氧化鋁陶瓷的制備方法的工藝流程圖。具體實施方式為了便于理解本發(fā)明,下面將結(jié)合具體實施方式對本發(fā)明進(jìn)行更的描述。具體實施方式中給出了本發(fā)明的較佳的實施例。但是,本發(fā)明可以以許多不同的形式來實現(xiàn),并不限于本文所描述的實施例。相反地,提供這些實施例的目的是使對本發(fā)明的公開內(nèi)容的理解更加透徹。除非另有定義,本文所使用的所有的技術(shù)和科學(xué)術(shù)語與屬于本發(fā)明的技術(shù)領(lǐng)域的技術(shù)人員通常理解的含義相同。本文中在本發(fā)明的說明書中所使用的術(shù)語只是為了描述具體地實施例的目的,不是旨在于限制本發(fā)明。請參閱圖1,一實施方式的氧化鋁陶瓷的制備方法,包括如下步驟:步驟s110:將原料混合,得到陶瓷粉體,其中,按質(zhì)量百分含量計。青島氧化鋯陶瓷板無論是產(chǎn)品咨詢、技術(shù)支持還是售后維修,我們都將竭誠為客戶提供較成熟的幫助和支持。
原料包括:35%~99%的氧化鋁、%~60%的氧化鋯及%~%的燒結(jié)助劑,且原料的粒徑均為納米級,燒結(jié)助劑包括氧化鎂、氧化鈣、氧化鈉、氧化鉿及氧化鉀。通過添加氧化鋯,使氧化鋯分布在氧化鋁基體中,由于氧化鋁與氧化鋯的膨脹系數(shù)存在差異,在燒結(jié)冷卻的過程中,氧化鋯顆粒上的應(yīng)力得到松弛,四方相轉(zhuǎn)變?yōu)閱涡毕喽贵w積發(fā)生膨脹,從而產(chǎn)生微裂紋,達(dá)到增韌氧化鋁的效果,提高氧化鋁陶瓷的強度。上述燒結(jié)助劑能夠有效地**晶粒長大,提高晶粒的均一性,以提高陶瓷強度。將原料的粒徑均設(shè)置為納米級,能夠(小得到的氧化鋁陶瓷的晶粒尺寸,且使氧化鋁陶瓷的密度提高。具體地,氧化鋁的平均粒徑為100nm~300nm,氧化鋯的平均粒徑為10nm~50nm。燒結(jié)助劑的平均粒徑為100nm~300nm。氧化鋁、氧化鋯及燒結(jié)助劑的平均粒徑設(shè)置為上述值時能夠進(jìn)一步減少氧化鋁陶瓷的晶粒尺寸,提高氧化鋁陶瓷的性能。具體地,按原料的總質(zhì)量計,燒結(jié)助劑包括質(zhì)量百分含量為%~%的氧化鎂、質(zhì)量百分含量為%~%的氧化鈣、質(zhì)量百分含量為%~%的氧化鈉、質(zhì)量百分含量為%~%的氧化鉿及質(zhì)量百分含量為%~%的氧化鉀。在氧化鋁中添加上述燒結(jié)助劑能夠降低燒結(jié)溫度,**晶粒的生長。
等離子噴涂氧化鋁陶瓷涂層研究現(xiàn)狀及展望1等離子噴涂氧化鋁涂層的研究氧化鋁陶瓷涂層大致經(jīng)歷了氧化鋁涂層、氧化鋁-氧化鈦涂層和納米氧化鋁涂層等階段,粉末從微米級向納米級細(xì)化,從單一成分向復(fù)合化發(fā)展,涂層結(jié)構(gòu)由單層過渡到多層或梯度漸變層。利用等離子噴涂氧化鋁制備結(jié)構(gòu)復(fù)合涂層和功能梯度涂層,是國內(nèi)外研究陶瓷涂層微觀**、耐磨損、耐腐蝕和耐高溫氧化等性能的熱點方向之一。常規(guī)氧化鋁涂層**和性能研究初期表明,等離子噴涂出氧化鋁陶瓷涂層呈片層狀,有少量孔隙、微裂紋及雜質(zhì),氧化鋁的典型晶體結(jié)構(gòu)為穩(wěn)定相α-Al2O3,等離子噴涂后涂層中α-Al2O3均減少,主要以亞穩(wěn)定相γ-Al2O3存在。氧化鋁涂層可用作常溫下的低應(yīng)力磨粒磨損、硬面磨損、耐多種化工介質(zhì)和化工氣體腐蝕、耐氣蝕和沖蝕涂層,還用于高溫下的耐燃?xì)鈿馕g、熱障、高溫可磨耗涂層和高溫發(fā)射涂層。氧化鋁陶瓷材料有質(zhì)脆、對應(yīng)力集中和裂紋敏感、抗熱震性差等固有弱點,與金屬材料的熱物理性能(如膨脹系數(shù)、彈性模量、熱導(dǎo)率等)差別大,等離子普通涂層本身結(jié)合強度低、孔隙率高,在高溫差環(huán)境下,普通涂層很容易出現(xiàn)開裂甚至剝落。為此,設(shè)計梯度涂層。粉末的粒度和均勻性對陶瓷的燒結(jié)質(zhì)量和性能有影響。
不同的部分熔化**源于復(fù)合陶瓷粉末中Al2O3與TiO2之間的熔點差異。納米陶瓷涂層中的顯微結(jié)構(gòu)的變化改善了涂層的孔隙率和韌性,涂層的顯微硬度和結(jié)合強度比傳統(tǒng)涂層有了明顯提高。在沖蝕過程中,常規(guī)陶瓷涂層表面剝落嚴(yán)重,而納米陶瓷涂層的沖蝕質(zhì)量損失較?。患{米AT13涂層的熱震失效循環(huán)次數(shù)明顯高于常規(guī)氧化鋁涂層,且熱震溫度越高表現(xiàn)越明顯;火焰噴燒試驗表明,納米AT13涂層失效時較常規(guī)涂層燒損面積小,且抗燒蝕時間更長。2激光重熔等離子噴涂Al2O3涂層的研究等離子噴涂氧化鋁涂層已在工業(yè)得到,但等離子噴涂工藝制約涂層質(zhì)量,激光重熔為這一技術(shù)難題的解決提供了新的途徑,激光重熔能克服等離子噴涂層的片層狀、孔隙率高、裂紋較多、涂層與基體機械結(jié)合等缺陷。國內(nèi)外學(xué)者將激光重熔技術(shù)和等離子噴涂技術(shù)結(jié)合起來制備氧化鋁陶瓷復(fù)合涂層,探究激光重熔對陶瓷涂層**結(jié)構(gòu)和性能的影響。激光重熔技術(shù)激光重熔技術(shù)是在惰性氣體保護(hù)下,采用聚焦激光束連續(xù)輻照并掃過涂層,快速加熱涂層的表面至熔化狀態(tài),隨后的冷卻過程中向基材金屬快速傳熱,在大的冷卻速度下快速凝固,在噴涂陶瓷層表面獲得結(jié)構(gòu)均勻致密、晶粒細(xì)化的陶瓷涂層。氧化鋁陶瓷在化工行業(yè)可用于制造耐腐蝕的管道、閥門和反應(yīng)釜內(nèi)襯。廣東光伏陶瓷片
其穩(wěn)定的化學(xué)性質(zhì)和物理性能,使得產(chǎn)品在長期使用過程中性能不易衰減。山東氧化鋁陶瓷批發(fā)價
常用成型介紹:1、干壓成型:氧化鋁陶瓷干壓成型技術(shù)限于形狀單純且內(nèi)壁厚度超過1mm,長度與直徑之比不大于4∶1的物件。成型方法有單軸向或雙向。壓機有液壓式、機械式兩種,可呈半自動或全自動成型方式。壓機大壓力為200Mpa。產(chǎn)量每分鐘可達(dá)15~50件。由于液壓式壓機沖程壓力均勻,故在粉料充填有差異時壓制件高度不同。而機械式壓機施加壓力大小因粉體充填多少而變化,易導(dǎo)致燒結(jié)后尺寸收縮產(chǎn)生差異,影響產(chǎn)品質(zhì)量。因此干壓過程中粉體顆粒均勻分布對模具充填非常重要。充填量準(zhǔn)確與否對制造的氧化鋁陶瓷零件尺寸精度控制影響很大。粉體顆粒以大于60μm、介于60~200目之間可獲大自由流動效果,取得好壓力成型效果。2、注漿成型法:注漿成型是氧化鋁陶瓷使用早的成型方法。由于采用石膏模、成本低且易于成型大尺寸、外形復(fù)雜的部件。注漿成型的關(guān)鍵是氧化鋁漿料的制備。通常以水為熔劑介質(zhì),再加入解膠劑與粘結(jié)劑,充分研磨之后排氣,然后倒注入石膏模內(nèi)。由于石膏模毛細(xì)管對水分的吸附,漿料遂固化在模內(nèi)??招淖{時,在模壁吸附漿料達(dá)要求厚度時,還需將多余漿料倒出。為減少坯體收縮量、應(yīng)盡量使用高濃度漿料。山東氧化鋁陶瓷批發(fā)價