AFM液相成像技術(shù)的優(yōu)點(diǎn)在于消除了毛細(xì)作用力,針尖粘滯力,更重要的是可以在接近生理?xiàng)l件下考察DNA 的單分子行為。DNA 分子在緩沖溶液或水溶液中與基底結(jié)合不緊密,是液相AFM面臨的主要困難之一。硅烷化試劑,如3-氨丙基三乙氧基硅烷(APTES)和陽(yáng)離子磷脂雙層修飾的云母基底固定DNA 分子,再在緩沖液中利用AFM 成像,可以解決這一難題。在氣相條件下陽(yáng)離子參與DNA的沉積已經(jīng)發(fā)展十分成熟,適于AFM 觀察。在液相條件下,APTES 修飾的云母基底較常用。DNA的許多構(gòu)象諸如彎曲,超螺旋,小環(huán)結(jié)構(gòu),三鏈螺旋結(jié)構(gòu),DNA 三通接點(diǎn)構(gòu)象,DNA 復(fù)制和重組的中間體構(gòu)象,分子開(kāi)關(guān)結(jié)構(gòu)和藥物分子插入到DNA 鏈中的相互作用都地被AFM考察,獲得了許多新的理解。若樣品表面柔嫩而不能承受這樣的力,便不宜選用接觸模式對(duì)樣品表面進(jìn)行成像。上海原子力顯微鏡測(cè)試價(jià)錢(qián)
在原子力顯微鏡(Atomic Force Microscope,AFM)的系統(tǒng)中,可分成三個(gè)部分:力檢測(cè)部分、位置檢測(cè)部分、反饋系統(tǒng)。力檢測(cè)部分在原子力顯微鏡(AFM)的系統(tǒng)中,所要檢測(cè)的力是原子與原子之間的范德華力。所以在本系統(tǒng)中是使用微小懸臂(cantilever)來(lái)檢測(cè)原子之間力的變化量。微懸臂通常由一個(gè)一般100~500μm長(zhǎng)和大約500nm~5μm厚的硅片或氮化硅片制成。微懸臂頂端有一個(gè)尖銳針尖,用來(lái)檢測(cè)樣品-針尖間的相互作用力。這微小懸臂有一定的規(guī)格,例如:長(zhǎng)度、寬度、彈性系數(shù)以及針尖的形狀,而這些規(guī)格的選擇是依照樣品的特性,以及操作模式的不同,而選擇不同類型的探針。位置檢測(cè)部分原子力顯微鏡在原子力顯微鏡(AFM)的系統(tǒng)中,當(dāng)針尖與樣品之間有了交互作用之后,會(huì)使得懸臂cantilever擺動(dòng),當(dāng)激光照射在微懸臂的末端時(shí),其反射光的位置也會(huì)因?yàn)閼冶蹟[動(dòng)而有所改變,這就造成偏移量的產(chǎn)生。在整個(gè)系統(tǒng)中是依靠激光光斑位置檢測(cè)器將偏移量記錄下并轉(zhuǎn)換成電的信號(hào),以供SPM控制器作信號(hào)處理。衢州原子力顯微鏡測(cè)試技術(shù)在樣品掃描時(shí),由于樣品表面的原子與微懸臂探針的原子間的相互作用力;
原子力顯微鏡的基本原理是:將一個(gè)對(duì)微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖原子與樣品表面原子間存在極微弱的排斥力,通過(guò)在掃描時(shí)控制這種力的恒定,帶有針尖的微懸臂將對(duì)應(yīng)于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運(yùn)動(dòng)。利用光學(xué)檢測(cè)法或隧道電流檢測(cè)法,可測(cè)得微懸臂對(duì)應(yīng)于掃描各點(diǎn)的位置變化,從而可以獲得樣品表面形貌的信息。我們以激光檢測(cè)原子力顯微鏡(AtomicForceMicroscopeEmployingLaserBeamDeflectionforForceDetection,Laser-AFM)來(lái)詳細(xì)說(shuō)明其工作原理。
二極管激光器(Laser Diode)發(fā)出的激光束經(jīng)過(guò)光學(xué)系統(tǒng)聚焦在微懸臂(Cantilever)背面,并從微懸臂背面反射到由光電二極管構(gòu)成的光斑位置檢測(cè)器(Detector)。在樣品掃描時(shí),由于樣品表面的原子與微懸臂探針的原子間的相互作用力,微懸臂將隨樣品表面形貌而彎曲起伏,反射光束也將隨之偏移,因而,通過(guò)光電二極管檢測(cè)光斑位置的變化,就能獲得被測(cè)樣品表面形貌的信息。
在系統(tǒng)檢測(cè)成像全過(guò)程中,探針和被測(cè)樣品間的距離始終保持在納米(10e-9米)量級(jí),距離太大不能獲得樣品表面的信息,距離太小會(huì)損傷探針和被測(cè)樣品,反饋回路(Feedback)的作用就是在工作過(guò)程中,由探針得到探針-樣品相互作用的強(qiáng)度,來(lái)改變加在樣品掃描器垂直方向的電壓,從而使樣品伸縮,調(diào)節(jié)探針和被測(cè)樣品間的距離,反過(guò)來(lái)控制探針-樣品相互作用的強(qiáng)度,實(shí)現(xiàn)反饋控制。因此,反饋控制是本系統(tǒng)的主要工作機(jī)制。本系統(tǒng)采用數(shù)字反饋控制回路,用戶在控制軟件的參數(shù)工具欄通過(guò)以參考電流、積分增益和比例增益幾個(gè)參數(shù)的設(shè)置來(lái)對(duì)該反饋回路的特性進(jìn)行控制。 在系統(tǒng)檢測(cè)成像全過(guò)程中,探針和被測(cè)樣品間的距離始終保持在納米(10e-9米)量級(jí);
在AFM 觀察包裹有紫膜的噬菌調(diào)理素蛋白(BR) 的研究中,AFM 儀器的改進(jìn),檢測(cè)技術(shù)的提高和制樣技術(shù)的完善得到了集中的體現(xiàn)。在細(xì)胞中,分子馬達(dá)可以將化學(xué)能轉(zhuǎn)變?yōu)闄C(jī)械運(yùn)動(dòng),防止因?yàn)椴祭蔬\(yùn)動(dòng)導(dǎo)致的細(xì)胞中具有方向性的活動(dòng)出現(xiàn)錯(cuò)誤,這些活動(dòng)包括:肌漿球蛋白,運(yùn)動(dòng)蛋白,動(dòng)力蛋白,螺旋酶,DNA 聚合酶和RNA 聚合酶等分子馬達(dá)蛋白的共同特點(diǎn)是沿著一條線性軌道執(zhí)行一些與生命活動(dòng)息息相關(guān)的功能,比如肌肉的收縮,細(xì)胞的分化過(guò)程中染色體的隔離,不同細(xì)胞間的細(xì)胞器的置換以及基因信息的解碼和復(fù)制等。由于分子馬達(dá)本身的微型化,它們?nèi)菀资芨叩臒崮芎痛蟮牟▌?dòng)的影響,了解馬達(dá)分子如何正常有序工作就成為一項(xiàng)具有挑戰(zhàn)性的任務(wù)。利用AFM,人們已經(jīng)知道了肌動(dòng)蛋白結(jié)合蛋白的結(jié)構(gòu)信息和細(xì)胞運(yùn)動(dòng)過(guò)程中肌動(dòng)蛋白骨架調(diào)控功能。因而,通過(guò)光電二極管檢測(cè)光斑位置的變化,就能獲得被測(cè)樣品表面形貌的信息。重慶原子力顯微鏡測(cè)試服務(wù)
會(huì)使得懸臂cantilever擺動(dòng),當(dāng)激光照射在微懸臂的末端時(shí),其反射光的位置也會(huì)因?yàn)閼冶蹟[動(dòng)而有所改變;上海原子力顯微鏡測(cè)試價(jià)錢(qián)
原子力顯微鏡(AtomicForceMicroscope,簡(jiǎn)稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測(cè)樣品原子之間的作用力,從而達(dá)到檢測(cè)的目的,具有原子級(jí)的分辨率。由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測(cè)方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)差別在于并非利用電子隧穿效應(yīng),而是檢測(cè)原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來(lái)呈現(xiàn)樣品的表面特性;上海原子力顯微鏡測(cè)試價(jià)錢(qián)