原子力顯微鏡(AtomicForceMicroscope,簡(jiǎn)稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測(cè)樣品原子之間的作用力,從而達(dá)到檢測(cè)的目的,具有原子級(jí)的分辨率;由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測(cè)方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)差別在于并非利用電子隧穿效應(yīng),而是檢測(cè)原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來呈現(xiàn)樣品的表面特性;本系統(tǒng)采用數(shù)字反饋控制回路,用戶在控制軟件的參數(shù)工具欄通過以參考電流;上海原子力顯微鏡測(cè)試公司
原子力顯微鏡(AtomicForceMicroscope,簡(jiǎn)稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測(cè)樣品原子之間的作用力,從而達(dá)到檢測(cè)的目的,具有原子級(jí)的分辨率。由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測(cè)方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)差別在于并非利用電子隧穿效應(yīng),而是檢測(cè)原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來呈現(xiàn)樣品的表面特性、贛州原子力顯微鏡測(cè)試服務(wù)在系統(tǒng)檢測(cè)成像全過程中,探針和被測(cè)樣品間的距離始終保持在納米(10e-9米)量級(jí);
在AFM 觀察包裹有紫膜的噬菌調(diào)理素蛋白(BR) 的研究中,AFM 儀器的改進(jìn),檢測(cè)技術(shù)的提高和制樣技術(shù)的完善得到了集中的體現(xiàn)。在細(xì)胞中,分子馬達(dá)可以將化學(xué)能轉(zhuǎn)變?yōu)闄C(jī)械運(yùn)動(dòng),防止因?yàn)椴祭蔬\(yùn)動(dòng)導(dǎo)致的細(xì)胞中具有方向性的活動(dòng)出現(xiàn)錯(cuò)誤,這些活動(dòng)包括:肌漿球蛋白,運(yùn)動(dòng)蛋白,動(dòng)力蛋白,螺旋酶,DNA 聚合酶和RNA 聚合酶等分子馬達(dá)蛋白的共同特點(diǎn)是沿著一條線性軌道執(zhí)行一些與生命活動(dòng)息息相關(guān)的功能,比如肌肉的收縮,細(xì)胞的分化過程中染色體的隔離,不同細(xì)胞間的細(xì)胞器的置換以及基因信息的解碼和復(fù)制等。由于分子馬達(dá)本身的微型化,它們?nèi)菀资芨叩臒崮芎痛蟮牟▌?dòng)的影響,了解馬達(dá)分子如何正常有序工作就成為一項(xiàng)具有挑戰(zhàn)性的任務(wù)。利用AFM,人們已經(jīng)知道了肌動(dòng)蛋白結(jié)合蛋白的結(jié)構(gòu)信息和細(xì)胞運(yùn)動(dòng)過程中肌動(dòng)蛋白骨架調(diào)控功能。
原子力顯微鏡(AtomicForceMicroscope,簡(jiǎn)稱AFM)是一種用于研究表面形貌和表面特性的高分辨率掃描探針顯微鏡。它利用微懸臂上的針尖與樣品表面之間的相互作用力來獲取表面形貌和表面特性信息。AFM可以測(cè)試各種材料表面的形貌、粗糙度、彈性、硬度、化學(xué)反應(yīng)等特性,廣泛應(yīng)用于納米科學(xué)研究領(lǐng)域。AFM測(cè)試的內(nèi)容主要包括以下幾個(gè)方面:1.表面形貌:AFM可以獲取表面形貌的高分辨率圖像,包括表面起伏、溝壑、顆粒大小等特征。這對(duì)于研究表面微觀結(jié)構(gòu)、表面處理效果以及材料性能等方面具有重要意義。2.表面粗糙度:AFM可以測(cè)量表面粗糙度,即表面微小起伏和波紋的幅度和頻率。這對(duì)于研究表面加工質(zhì)量、材料表面處理效果以及摩擦學(xué)等領(lǐng)域具有重要意義。3.彈性:AFM可以測(cè)量樣品的彈性,包括彈性模量和泊松比等參數(shù)。這對(duì)于研究材料力學(xué)性能、材料內(nèi)部結(jié)構(gòu)以及納米尺度下的力學(xué)行為等方面具有重要意義。4.硬度:AFM可以測(cè)量樣品的硬度,即針尖在樣品表面劃過時(shí)所受到的阻力。這對(duì)于研究材料硬度分布、材料內(nèi)部結(jié)構(gòu)以及納米尺度下的力學(xué)行為等方面具有重要意義。5.化學(xué)反應(yīng):AFM可以觀察表面化學(xué)反應(yīng)的動(dòng)態(tài)過程,包括化學(xué)反應(yīng)前后表面形貌的變化、化學(xué)反應(yīng)產(chǎn)物的生成等; 它通過檢測(cè)待測(cè)樣品表面和一個(gè)微型力敏感元件之間的極微弱的原子間相互作用力來研究物質(zhì)的表面結(jié)構(gòu)及性質(zhì)。
二極管激光器(Laser Diode)發(fā)出的激光束經(jīng)過光學(xué)系統(tǒng)聚焦在微懸臂(Cantilever)背面,并從微懸臂背面反射到由光電二極管構(gòu)成的光斑位置檢測(cè)器(Detector)。在樣品掃描時(shí),由于樣品表面的原子與微懸臂探針的原子間的相互作用力,微懸臂將隨樣品表面形貌而彎曲起伏,反射光束也將隨之偏移,因而,通過光電二極管檢測(cè)光斑位置的變化,就能獲得被測(cè)樣品表面形貌的信息。
在系統(tǒng)檢測(cè)成像全過程中,探針和被測(cè)樣品間的距離始終保持在納米(10e-9米)量級(jí),距離太大不能獲得樣品表面的信息,距離太小會(huì)損傷探針和被測(cè)樣品,反饋回路(Feedback)的作用就是在工作過程中,由探針得到探針-樣品相互作用的強(qiáng)度,來改變加在樣品掃描器垂直方向的電壓,從而使樣品伸縮,調(diào)節(jié)探針和被測(cè)樣品間的距離,反過來控制探針-樣品相互作用的強(qiáng)度,實(shí)現(xiàn)反饋控制。因此,反饋控制是本系統(tǒng)的主要工作機(jī)制。本系統(tǒng)采用數(shù)字反饋控制回路,用戶在控制軟件的參數(shù)工具欄通過以參考電流、積分增益和比例增益幾個(gè)參數(shù)的設(shè)置來對(duì)該反饋回路的特性進(jìn)行控制。 在原子力顯微鏡的系統(tǒng)中,可分成三個(gè)部分:力檢測(cè)部分、位置檢測(cè)部分、反饋系統(tǒng)。新鄉(xiāng)原子力顯微鏡測(cè)試廠家
檢測(cè)該斥力可獲得表面原子級(jí)分辨圖像,一般情況下分辨率也在納米級(jí)水平。上海原子力顯微鏡測(cè)試公司
原子力顯微鏡(AtomicForceMicroscope,簡(jiǎn)稱AFM)是一種用于研究表面形貌和表面特性的高分辨率掃描探針顯微鏡。它利用微懸臂上的針尖與樣品表面之間的相互作用力來獲取表面形貌和表面特性信息。AFM可以測(cè)試各種材料表面的形貌、粗糙度、彈性、硬度、化學(xué)反應(yīng)等特性,廣泛應(yīng)用于納米科學(xué)研究領(lǐng)域。AFM測(cè)試的內(nèi)容主要包括以下幾個(gè)方面:1.表面形貌:AFM可以獲取表面形貌的高分辨率圖像,包括表面起伏、溝壑、顆粒大小等特征。這對(duì)于研究表面微觀結(jié)構(gòu)、表面處理效果以及材料性能等方面具有重要意義。2.表面粗糙度:AFM可以測(cè)量表面粗糙度,即表面微小起伏和波紋的幅度和頻率。這對(duì)于研究表面加工質(zhì)量、材料表面處理效果以及摩擦學(xué)等領(lǐng)域具有重要意義。3.彈性:AFM可以測(cè)量樣品的彈性,包括彈性模量和泊松比等參數(shù)。這對(duì)于研究材料力學(xué)性能、材料內(nèi)部結(jié)構(gòu)以及納米尺度下的力學(xué)行為等方面具有重要意義。4.硬度:AFM可以測(cè)量樣品的硬度,即針尖在樣品表面劃過時(shí)所受到的阻力。這對(duì)于研究材料硬度分布、材料內(nèi)部結(jié)構(gòu)以及納米尺度下的力學(xué)行為等方面具有重要意義。5.化學(xué)反應(yīng):AFM可以觀察表面化學(xué)反應(yīng)的動(dòng)態(tài)過程,包括化學(xué)反應(yīng)前后表面形貌的變化、化學(xué)反應(yīng)產(chǎn)物的生成等。 上海原子力顯微鏡測(cè)試公司