傳統(tǒng)電能計(jì)量領(lǐng)域?qū)τ陔娏鞯木軠y(cè)量或電流傳感器校驗(yàn)往往通過(guò)電流比較儀的方式實(shí)現(xiàn)。傳統(tǒng)的交流比較儀通過(guò)增加勵(lì)磁電流補(bǔ)償模塊,降低互感器正常工作下勵(lì)磁電流的大小,使得主鐵芯工作在微磁通或零磁通狀態(tài)從而降低電流測(cè)量的比例誤差和相位誤差,然而傳統(tǒng)的帶鐵芯交流比較儀在直流分量下會(huì)出現(xiàn)磁飽和問(wèn)題,勵(lì)磁電流補(bǔ)償模塊無(wú)法完成直流勵(lì)磁的補(bǔ)償,因此傳統(tǒng)的交流比較儀方法無(wú)法完成交直流同時(shí)測(cè)量。傳統(tǒng)的直流比較儀基于磁調(diào)制器原理,鐵芯采用雙鐵芯差動(dòng)式結(jié)構(gòu),通過(guò)外接激磁電源,調(diào)整合適的激磁電流及頻率大小,在檢測(cè)繞組端,通過(guò)檢測(cè)二次諧波電壓的大隨著早期新能源汽車使用的動(dòng)力電池逐漸退役,中國(guó)動(dòng)力電池回收量的不斷上漲,動(dòng)力電池回收行業(yè)快速發(fā)展。南通功率分析儀電流傳感器出廠價(jià)
IP<0 時(shí)激磁電壓波形 Vex 及激磁電流波形,圖中紅色曲線 為 IP=0 時(shí)激磁電流波形。為方便下一節(jié)對(duì)自激振蕩磁通門傳感器建模,將零點(diǎn)選擇為激磁電流達(dá)到反向充電電流 I-m 時(shí)刻,此時(shí)激磁電壓恰好發(fā)生翻轉(zhuǎn)。當(dāng)一次電流 IP<0,即為負(fù)向直流偏置,其在鐵芯 C1 中產(chǎn)生恒定的去磁直流磁通, 鐵芯 C1 磁化曲線將向右發(fā)生平移使鐵芯 C1 進(jìn)入負(fù)向飽和區(qū)的閾值電流變小。 且負(fù)向飽 和閾值電流滿足 I-th1=I-th-βIp,此時(shí)新的振蕩過(guò)程將不同于原 IP=0 時(shí)自激振蕩過(guò)程,由于 負(fù)向飽和閾值電流 I-th1 小于原負(fù)向激磁閾值電流 I-th,從而導(dǎo)致負(fù)半周波自激振蕩過(guò)程將 不會(huì)在原時(shí)刻進(jìn)入飽和區(qū), 而是略有提前, 即鐵芯 C1 工作點(diǎn)將提前進(jìn)入負(fù)向飽和區(qū) C; 同時(shí),由于負(fù)向去磁直流磁通作用,鐵芯 C1 進(jìn)入正向飽和區(qū)需要額外的激磁電流以抵 消負(fù)向直流產(chǎn)生的的負(fù)向磁勢(shì), 使得鐵芯 C1 進(jìn)入正向飽和區(qū)的閾值電流變大,正向飽 和閾值電流滿足 I+th1=I+th-βIp 。山西電池包電流傳感器價(jià)格大全截至2023年9月,儲(chǔ)能系統(tǒng)中標(biāo)價(jià)格比2022年降低近30%。
充電至t1時(shí)刻后,由于鐵芯C1飽和,激磁感抗ZL迅速變小,因此t1~t2期間,激磁電流iex迅速增大,當(dāng)激磁電流iex達(dá)到充電電流Im=ρVOH/RS時(shí),電路環(huán)路增益11ρAv>>1滿足振蕩電路起振條件,方波激磁電壓發(fā)生反轉(zhuǎn),輸出電壓由正向峰值電壓VOH變?yōu)榉聪蚍逯惦妷篤OL,即t2時(shí)刻,VO=VOL。t2時(shí)刻起,鐵芯C1工作點(diǎn)由正向飽和區(qū)B開始向線性區(qū)A移動(dòng)。在t2~t3期間,鐵芯C1仍工作于正向飽和區(qū)B,激磁感抗ZL小,而輸出方波電壓反向,此時(shí)加在非線性電感L上反相端電壓V-=ρVOL,產(chǎn)生的充電電流反向,因此非線性電感L開始迅速放電,激磁電流iex開始降低,于t3時(shí)刻激磁電流iex降至正向激磁電流閾值I+th。
通過(guò)對(duì)自激振蕩磁通門傳感器的起振原理及正反向直流測(cè)量時(shí)激磁電流變化過(guò)程進(jìn)行詳細(xì)的分析,自激振蕩磁通門電路測(cè)量時(shí)具有如下特點(diǎn):(1)自激振蕩磁通門起振時(shí)需要滿足大充電電流Im大于鐵芯C1激磁電流閾值Ith,即滿足Im>Ith。(2)鐵芯C1工作在正負(fù)交替飽和的周期性狀態(tài)。(3)當(dāng)Ip=0時(shí),采樣電壓VRs一個(gè)周波內(nèi)平均值為0;當(dāng)Ip>0時(shí),采樣電壓VRs一個(gè)周波內(nèi)平均值為負(fù);當(dāng)Ip<0時(shí),采樣電壓VRs一個(gè)周波內(nèi)平均值為正;由上述分析可知,采樣電壓的平均值大小反映了一次電流的量值大小和方向。接下來(lái)本文將對(duì)自激振蕩磁通門的數(shù)學(xué)模型進(jìn)行詳細(xì)的推導(dǎo),探究采樣電壓大小與一次電流的定量關(guān)系,探究交直流情況下自激振蕩磁通門測(cè)量原理是否適用,以及自激振蕩方波周期的定量表達(dá)式,并結(jié)合滿足鐵芯C1交替飽和所需的約束條件,對(duì)自激振蕩磁通門電路設(shè)計(jì)原則及參數(shù)選擇進(jìn)行探討。弱磁場(chǎng)測(cè)量方法中,靈敏度高的磁場(chǎng)測(cè)量?jī)x是基于超導(dǎo)量子干涉器件法。
基于自激振蕩磁通門技術(shù)和傳統(tǒng)電流比較儀結(jié)構(gòu),通過(guò)改 進(jìn)鐵芯結(jié)構(gòu)及信號(hào)解調(diào)電路, 構(gòu)建了閉環(huán)零磁通交直流電流測(cè)量方案,研制了新型交直 流電流傳感器樣機(jī)。樣機(jī)總體包括兩個(gè)鐵芯三個(gè)繞組, 其中改進(jìn)結(jié)構(gòu)的自激振蕩磁通門 傳感器作為新型交直流電流傳感器的零磁通檢測(cè)器, 檢測(cè)一二次電流磁勢(shì)之差,構(gòu)成了 新型交直流電流傳感器的電流檢測(cè)模塊,除此之外還包括信號(hào)處理模塊, 誤差控制模塊 及電流反饋模塊。環(huán)形鐵芯 C1 及 C2 為傳感器磁性器件,兩者磁性材料參數(shù)一 致, 幾何尺寸完全一致, 均選取高磁導(dǎo)率、低矯頑力、高磁飽和感應(yīng)強(qiáng)度的非線性鐵磁 材料。儲(chǔ)能系統(tǒng)多維度安全防護(hù):本體電芯材料、工藝、結(jié)構(gòu)多方優(yōu)化。徐州充電樁檢測(cè)電流傳感器報(bào)價(jià)
鋰電儲(chǔ)能產(chǎn)業(yè)鏈供給能力持續(xù)提升,企業(yè)數(shù)量和投資額度快速攀升。南通功率分析儀電流傳感器出廠價(jià)
由自激振蕩磁通門傳感器交直流適應(yīng)性分析可知,設(shè)計(jì)性能優(yōu)異的自激振蕩磁通門傳感器,在激磁頻率方面有所要求,本節(jié)將對(duì)鐵磁材料參數(shù)及各個(gè)電路參數(shù)設(shè)計(jì)進(jìn)行探討。作為電流傳感器,本節(jié)主要關(guān)注其檢測(cè)帶寬、量程、線性度、靈敏度及穩(wěn)定度五個(gè)方面的特性并對(duì)其進(jìn)行探究。(1)檢測(cè)帶寬WIP根據(jù)自激振蕩磁通門傳感器數(shù)學(xué)模型分析,其檢測(cè)交流頻率受到激磁電壓頻率fex限制,自激振蕩磁通門傳感器檢測(cè)帶寬WIP<fex/2。理論上激磁電壓頻率越大,檢測(cè)帶寬越大,對(duì)低頻信號(hào)測(cè)量越準(zhǔn)確。南通功率分析儀電流傳感器出廠價(jià)