傳統(tǒng)磁通門電流傳感器常用偶次諧波檢測法來檢測被測電流值。具體的數(shù)學(xué)模型以及測量均通過在環(huán)形磁芯上環(huán)繞激磁繞組和感應(yīng)繞組來實現(xiàn)。根據(jù)法拉第電磁感應(yīng)定律可知,感應(yīng)繞組產(chǎn)生的感應(yīng)電動勢。激勵磁場的瞬時值方向呈周期性變化,磁芯的磁導(dǎo)率隨激勵磁場的改變而變化,但是沒有正負(fù)之分。偶次諧波檢測法是磁通門傳感器檢測方法中比較直白,比較簡單也是比較原始的測量方法,這一方法原理簡單,易于理解。但是由于在提取偶次諧波過程中需要進行選頻放大、相敏整流以及積分環(huán)節(jié),檢測電路復(fù)雜,精度較低,溫漂較大。對于工業(yè)應(yīng)用來說,偶次諧波解調(diào)電路具有復(fù)雜性,同時受到磁材料的工業(yè)性能限制,使用這種傳感器費用較高。磁通門電流傳感器適用于動力電池電量監(jiān)測和高精度電流監(jiān)測等應(yīng)用場合,如電動汽車電池管理系統(tǒng)。充電樁檢測電流傳感器設(shè)計標(biāo)準(zhǔn)
上世紀(jì)初,羅格夫斯基提出了一種可以用空心線圈測量磁場強度的方法,并且發(fā)表了論文:TheMeasurementofMagnetMotiveForce,這種線圈被命名為羅氏線圈。在后來的研究中,Cooper的人證明了可以用羅氏線圈來測量脈沖電流,為后來的應(yīng)用奠定了基礎(chǔ)。初期因為羅氏線圈對電流測量的精度問題,人們對羅氏線圈并不重視,直到上世紀(jì)60年代科學(xué)家改進了羅氏線圈的結(jié)構(gòu),從而提高了對電流測量精度,羅氏線圈重新得到了重視。到上世紀(jì)80年代,羅氏線圈的研究越發(fā)成熟,基本上實現(xiàn)了系列化和產(chǎn)業(yè)化,它的應(yīng)用也得到了進一步的推廣。羅氏線圈具有其獨特的結(jié)構(gòu),所以不需要考慮鐵芯所引起的問題,相比于傳統(tǒng)電磁式電流互感器,羅氏線圈具有以下優(yōu)勢:1.不需要考慮鐵芯的飽和,線性度好,線圈的測量范圍非常寬,可以跨越好幾個數(shù)量級;2.羅氏線圈的自身時間常數(shù)很小,所以可以用來測量較高頻率的電流,也就是說,可以測量的電流的頻帶很寬,特殊的設(shè)計甚至可以達到數(shù)千兆赫茲;3.線圈的輸出為電壓值,通過后續(xù)的信號處理電路,可以方便的實現(xiàn)數(shù)字化輸出;4.不含鐵芯,所以體積小,重量輕。羅氏線圈作為脈沖電流傳感器具有優(yōu)勢,可以說,羅氏線圈是對脈沖電流測量的優(yōu)勢選項。合肥開環(huán)電流傳感器聯(lián)系方式2022年新型儲能行業(yè)A輪和B輪融資金額325億元。
標(biāo)準(zhǔn)磁通門電流傳感器實際與閉環(huán)霍爾電流傳感器結(jié)構(gòu)相似,由相同帶縫隙的磁 路和用來得到零磁通的次級線圈構(gòu)成?;魻栯娏鱾鞲衅髋c磁通門電流傳感器主要的區(qū)別在于氣隙磁場檢測方式的不同:前者是通過一個霍爾元件獲得電壓信息進而得到被測電流;后者則是通過一個所謂的飽和電感來測量電流的。飽和電感的電感數(shù)值依賴于磁芯的磁導(dǎo)率,磁通密度高的時候磁芯飽和,電感值較低。低磁通密度時,電感值則較高。外部磁場的變化影響磁芯的飽和水平,進而改變磁芯導(dǎo)磁系數(shù),然后影響電感值。因此,當(dāng)存在外界磁場時將會改變場測量的電感值。如果飽和電感設(shè)計充分,這種改變非常明顯。
傳感器技術(shù)作為21世紀(jì)世界爭奪高科技技術(shù)的制高點的重要技術(shù),同時也是現(xiàn)代信息技術(shù)的三大技術(shù)產(chǎn)業(yè)的支柱之一。電流傳感器在電力電子技術(shù)控制和變換領(lǐng)域應(yīng)用越來越廣。電流傳感器不論在新能源技術(shù)發(fā)展中的并網(wǎng)控制,對過剩能量存儲以及再分配,還是在智能電網(wǎng)中的監(jiān)測以及電能的分配轉(zhuǎn)換等環(huán)節(jié)都起著極其重要的作用。電流的精確檢測是高頻電力電子應(yīng)用系統(tǒng)可靠高效運行的基礎(chǔ)。不同于傳統(tǒng)電力系統(tǒng)中的電流檢測,高頻電力電子系統(tǒng)的電流檢測存在很多特殊的情況。盡管分流器被設(shè)計為按照精確的比例分配電流,但實際應(yīng)用中可能會存在一定的誤差。
當(dāng)一次側(cè)存在直流分量時,傳統(tǒng)交流電流互感器計量失準(zhǔn)。當(dāng)一次側(cè)存在交流分量時,傳統(tǒng)直流電流互感器鐵芯激磁狀態(tài)受到影響,終導(dǎo)致直流計量失準(zhǔn)。已有方案中基于自激振蕩磁通門技術(shù)的電流傳感器,并未對交直流同時測量時交直流電流互感器性能進行測試[9,15]。目前也缺乏對交直流電流互感器校驗的相關(guān)章程,因此試驗時結(jié)合等44安匝方法,通過同時輸入交流電流和直流電流、且直流分量占比可調(diào)的方式,測試交直流下新型交直流電流互感器直流測量性能、交流測量性能。這種誤差可能由多種因素引起,包括但不限于:溫度變化、電氣噪聲、機械磨損以及制造過程中的不準(zhǔn)確性。無錫高線性度電流傳感器定制
新型儲能產(chǎn)業(yè)發(fā)展情況呈現(xiàn)出蓬勃發(fā)展的態(tài)勢。充電樁檢測電流傳感器設(shè)計標(biāo)準(zhǔn)
實際電源系統(tǒng)中有些電流的形式比較復(fù)雜,由于電源系統(tǒng)中的負(fù)載特性的變化,可能會引起電流的波形的變化。復(fù)雜電流波形可以看成多個不同頻率的電流疊加而成的。常見的復(fù)雜電流有交流電流疊加一個脈動的直流電流、直流電流疊加脈沖電流和電源中的負(fù)載電流等。復(fù)雜的電流波形可以經(jīng)過傅里葉分解,對各個頻率的分量進行的分別測量。進行疊加的各個分量具有不同的頻率,電流形式上為復(fù)雜波形,也就是說電流具有較寬的頻帶。為了精確測量具有寬頻帶的電流,就需要設(shè)計寬頻帶的電流傳感器。充電樁檢測電流傳感器設(shè)計標(biāo)準(zhǔn)