上世紀(jì)初,羅格夫斯基提出了一種可以用空心線圈測(cè)量磁場(chǎng)強(qiáng)度的方法,并且發(fā)表了論文:TheMeasurementofMagnetMotiveForce,這種線圈被命名為羅氏線圈。在后來的研究中,Cooper的人證明了可以用羅氏線圈來測(cè)量脈沖電流,為后來的應(yīng)用奠定了基礎(chǔ)。初期因?yàn)榱_氏線圈對(duì)電流測(cè)量的精度問題,人們對(duì)羅氏線圈并不重視,直到上世紀(jì)60年代科學(xué)家改進(jìn)了羅氏線圈的結(jié)構(gòu),從而提高了對(duì)電流測(cè)量精度,羅氏線圈重新得到了重視。到上世紀(jì)80年代,羅氏線圈的研究越發(fā)成熟,基本上實(shí)現(xiàn)了系列化和產(chǎn)業(yè)化,它的應(yīng)用也得到了進(jìn)一步的推廣。羅氏線圈具有其獨(dú)特的結(jié)構(gòu),所以不需要考慮鐵芯所引起的問題,相比于傳統(tǒng)電磁式電流互感器,羅氏線圈具有以下優(yōu)勢(shì):1.不需要考慮鐵芯的飽和,線性度好,線圈的測(cè)量范圍非常寬,可以跨越好幾個(gè)數(shù)量級(jí);2.羅氏線圈的自身時(shí)間常數(shù)很小,所以可以用來測(cè)量較高頻率的電流,也就是說,可以測(cè)量的電流的頻帶很寬,特殊的設(shè)計(jì)甚至可以達(dá)到數(shù)千兆赫茲;3.線圈的輸出為電壓值,通過后續(xù)的信號(hào)處理電路,可以方便的實(shí)現(xiàn)數(shù)字化輸出;4.不含鐵芯,所以體積小,重量輕。羅氏線圈作為脈沖電流傳感器具有優(yōu)勢(shì),可以說,羅氏線圈是對(duì)脈沖電流測(cè)量的優(yōu)勢(shì)選項(xiàng)。磁通門電流傳感器確實(shí)具有很強(qiáng)的抗干擾能力。這種抗干擾能力主要?dú)w功于它的激勵(lì)磁場(chǎng)持續(xù)振蕩的特性。深圳循環(huán)測(cè)試電流傳感器價(jià)格
為了簡(jiǎn)化運(yùn)算,按照自激振蕩磁通門電路, 激磁磁芯選取高磁導(dǎo)率、 低剩磁、低矯頑力的鐵磁材料,鐵芯 C1 磁化曲線模型選擇三折線分段線性化函數(shù)模型 表示, 并忽略鐵芯磁滯效應(yīng), 在線性區(qū) A 的激磁電感為 L,在正向飽和區(qū) B 及負(fù)向飽和 區(qū) C 的激磁電感為 l,且滿足 L>>l。假設(shè)零時(shí)刻時(shí),激磁電流 iex 達(dá)到負(fù)向充電最大電流 I-m ,且零時(shí)刻激磁方波電壓由 負(fù)向峰值 VOL 躍變?yōu)檎蚍逯?VOH。同時(shí)滿足-VOL=VOH=Vout ,正負(fù)向激磁電流峰值仍然 滿足 I+m=-I-m=Im=ρVOH/RS九江板載式電流傳感器發(fā)展現(xiàn)狀霍爾電流傳感器在測(cè)量電流時(shí)可能會(huì)受到噪聲的影響,例如熱噪聲、散粒噪聲和閃爍噪聲等。
加拿大學(xué)者 N.L.Kuster 、W.J.M.Moore 等,通過在交流比較儀結(jié)構(gòu)基礎(chǔ)上改進(jìn),將交流檢測(cè)模塊換為基于二次諧波磁調(diào)制器結(jié)構(gòu)的直流檢測(cè)器,設(shè)計(jì)相應(yīng)的倍頻電路及二次諧波解調(diào)電路,完成了直流比較儀研制,研制的變比為400:1 的直流比較儀比例精度在滿量程時(shí)為1ppm。歐洲核子研究中心(CENR)的 K.Unser,將磁調(diào)制器技術(shù)與磁積分器技術(shù)結(jié)合,研制出用于質(zhì)子同步器系統(tǒng)中粒子流檢測(cè)的寬頻電流互感器,該方法擴(kuò)展了電流測(cè)量帶寬,但交直流測(cè)量只能單獨(dú)進(jìn)行,交流通道與直流通道相互獨(dú)立。近年來,國(guó)內(nèi)在直流測(cè)量領(lǐng)域研究頗多的是華中科技大學(xué)和中國(guó)計(jì)量科學(xué)研究院,中國(guó)計(jì)量科學(xué)研究院的郭來祥對(duì)磁調(diào)制器理論研究頗深,通過應(yīng)用圖解法對(duì)三折線模型下的二次諧波式磁調(diào)制器進(jìn)行了系統(tǒng)的研究,在多種激磁方法的比較中發(fā)現(xiàn)恒流方波激磁與恒壓方波激磁效果比較好,磁調(diào)制器靈敏度比較好,并對(duì)磁調(diào)制器靈敏度進(jìn)行定量計(jì)算,對(duì)磁調(diào)制器基礎(chǔ)理論研究的完善做出巨大貢獻(xiàn)。
由于高頻大功率電力電子設(shè)備應(yīng)用的增加,這些設(shè)備中可能會(huì)產(chǎn)生交直流復(fù)合的復(fù)雜電流波形,包含直流、低頻交流和高達(dá)幾十千赫茲以上的高頻成分。高頻電力電子系統(tǒng)的實(shí)現(xiàn)依賴于整流、逆變、濾波等環(huán)節(jié),逆變器的作用在系統(tǒng)中尤其重要。逆變器的拓?fù)浣Y(jié)構(gòu)有以下幾種形式:帶工頻變壓器的逆變器、帶高頻變壓器的逆變器和無變壓器的逆變器三種基本形式。將隔離變壓器置于逆變器和輸入電路之間,可實(shí)現(xiàn)前后級(jí)電路的電氣隔離,防止直流電流分量注入到后級(jí)電路中。但是這樣會(huì)造成變壓器本身?yè)p耗增大,效率明顯降低,而且由于變壓器的加入提高了系統(tǒng)整體成本,增大了電路體積。無變壓器型逆變器則由于其成本較帶變壓器型明顯降低,效率得到提高而越來越受到人們的很多關(guān)注。但是由于逆變器輸出的交流中可能含有直流成分制,因此這種情況下要求電流傳感器能夠測(cè)量較小的直流成分。由于逆變器中的功率開關(guān)管的高頻開關(guān)特性,濾波電感中的電流會(huì)在指定輸出電流頻率的基礎(chǔ)上波動(dòng),可能含有與基頻相比大很多的高頻紋波。因此,同時(shí)可以測(cè)量直流微小電流,低頻及高頻交流的電流傳感器的研究十分必要。隨著高頻電力電子技術(shù)的不斷發(fā)展及廣泛應(yīng)用,高頻電力電子設(shè)備中可能會(huì)產(chǎn)生交直流復(fù)合的復(fù)雜電流波形。
根據(jù)初始條件iex(t1)及終止條件iex(t2)可以求得時(shí)間間隔t2-t1為:t2-t1=τ2ln(2-12)在t2≤t≤t3期間,電路初始條件iex(t2)仍滿足式(2-11),且此時(shí)鐵芯C1工作由線性區(qū)A轉(zhuǎn)入正向飽和區(qū)B,激磁電感減小為l,鐵芯C1回路電壓滿足,vex=VOH=Vout。此時(shí)回路電壓方程為:Vout=iex(t)*Rsum+l(2-13)在形式上式(2-13)與式(2-5)一致,因?yàn)榇藭r(shí)鐵芯均進(jìn)入飽和區(qū)工作。兩者所討論的激磁振蕩時(shí)刻不同,即一階線性微分方程的初始條件和終止條件均不相同。由初始條件式(2-11)與一階線性微分方程(2-13)可得t2≤t≤t3期間,激磁電流iex表達(dá)式為:t-t2t-t2--iex(t)=IC(1-eτ1)-(-Ith-βIp1)eτ1為了減小零點(diǎn)漂移,可以采取以下措施:選擇具有低零點(diǎn)漂移的霍爾電流傳感器。長(zhǎng)沙計(jì)量級(jí)電流傳感器發(fā)展現(xiàn)狀
激勵(lì)磁場(chǎng)振蕩產(chǎn)生一個(gè)交變的磁場(chǎng),這個(gè)交變的磁場(chǎng)會(huì)在被測(cè)導(dǎo)體中感應(yīng)出電流。深圳循環(huán)測(cè)試電流傳感器價(jià)格
傳感器技術(shù)作為21世紀(jì)世界爭(zhēng)奪高科技技術(shù)的制高點(diǎn)的重要技術(shù),同時(shí)也是現(xiàn)代信息技術(shù)的三大技術(shù)產(chǎn)業(yè)的支柱之一。電流傳感器在電力電子技術(shù)控制和變換領(lǐng)域應(yīng)用越來越廣。電流傳感器不論在新能源技術(shù)發(fā)展中的并網(wǎng)控制,對(duì)過剩能量存儲(chǔ)以及再分配,還是在智能電網(wǎng)中的監(jiān)測(cè)以及電能的分配轉(zhuǎn)換等環(huán)節(jié)都起著極其重要的作用。電流的精確檢測(cè)是高頻電力電子應(yīng)用系統(tǒng)可靠高效運(yùn)行的基礎(chǔ)。不同于傳統(tǒng)電力系統(tǒng)中的電流檢測(cè),高頻電力電子系統(tǒng)的電流檢測(cè)存在很多特殊的情況。深圳循環(huán)測(cè)試電流傳感器價(jià)格