之所以能產(chǎn)生這種可見運(yùn)動或表觀運(yùn)動,是因?yàn)槲矬w以不同的速度在不同的方向上移動,或者是因?yàn)橄鄼C(jī)在移動(或者兩者都有)在很多應(yīng)用程序中,跟蹤表觀運(yùn)動都是極其重要的。它可用來追蹤運(yùn)動中的物體,以測定它們的速度、判斷它們的目的地。對于手持?jǐn)z像機(jī)拍攝的視頻,可以用這種方法消除抖動或減小抖動幅度,使視頻更加平穩(wěn)。運(yùn)動估值還可用于視頻編碼,用以壓縮視頻,便于傳輸和存儲。被跟蹤的運(yùn)動可以是稀疏的(圖像的少數(shù)位置上有運(yùn)動,稱為稀疏運(yùn)動),也可以是稠密的(圖像的每個像素都有運(yùn)動,稱為稠密運(yùn)動)跟蹤視頻中的特征點(diǎn)從前面章節(jié)介紹的內(nèi)容可以看出,根據(jù)特殊的點(diǎn)分析圖像,可以使計(jì)算機(jī)視覺算法更加實(shí)高效。Viztra-LE034圖像處理板識別概率超過85%。青海智能化目標(biāo)跟蹤
視覺跟蹤技術(shù)是計(jì)算機(jī)視覺領(lǐng)域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導(dǎo)彈制導(dǎo)、視頻監(jiān)控、機(jī)器人視覺導(dǎo)航、人機(jī)交互、以及醫(yī)療診斷等許多方面有著廣泛的應(yīng)用前景。隨著研究人員不斷地深入研究,視覺目標(biāo)跟蹤在近十幾年里有了突破性的進(jìn)展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機(jī)器學(xué)習(xí)方法,更是結(jié)合了近些年人工智能熱潮—深度學(xué)習(xí)(神經(jīng)網(wǎng)絡(luò))和相關(guān)濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結(jié)果。青海智能化目標(biāo)跟蹤慧視光電基于AI圖像處理的監(jiān)控監(jiān)管方案能夠?qū)崿F(xiàn)安全生產(chǎn)。
當(dāng)兩個圖像之間還有旋轉(zhuǎn)或比例變化時,往往使用基于控制點(diǎn)的方法進(jìn)行圖像配準(zhǔn)。所謂特征點(diǎn)匹配就是在一幀圖像中尋找具有不變性質(zhì)的結(jié)構(gòu)—特征點(diǎn),例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點(diǎn)作匹配,從而求得該兩幀圖像之間的變換關(guān)系。從現(xiàn)實(shí)的觀點(diǎn)看,在全部特征點(diǎn)中,只有部分能得到正確的匹配,這是因?yàn)樘卣鼽c(diǎn)尋找算法并非完美無缺。特征點(diǎn)匹配方法具有:處理的數(shù)據(jù)量不斷減少、可能匹配的數(shù)目少于互相關(guān)方法和受照度、幾何的變化影響較小的優(yōu)點(diǎn)。根據(jù)具體的振動情況,選擇合適的特征點(diǎn)和速度較快的匹配策略是該任務(wù)研究的重點(diǎn)。目前的研究工作都致力于圖像間的自動配準(zhǔn),如直接相關(guān)匹配,基于圖像分割技術(shù)的配準(zhǔn),利用封閉輪廓的形心作為控制點(diǎn)的配準(zhǔn)等。
基于特征匹配的跟蹤方法不考慮運(yùn)動目標(biāo)的整體特征,通過有目的的提取序列圖像中的過零點(diǎn)、邊緣輪廓、線段等相關(guān)特征或是部分特性,并建立匹配模板,對目標(biāo)對象進(jìn)行特征匹配,達(dá)到對目標(biāo)對象跟蹤的目的。假定運(yùn)動目標(biāo)可以由惟一的特征**表達(dá),搜索到該相應(yīng)的特征就認(rèn)為跟蹤上了運(yùn)動目標(biāo)。除了用單一的特征來實(shí)現(xiàn)跟蹤外,還可以采用多個特征信息融合在一起作為跟蹤特征。該算法主要包括特征提取和特征匹配兩個方面。其中,特征提取指的是針對所包含的目標(biāo)對象的序列圖像選擇合適的目標(biāo)跟蹤特性。RK3588圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。
對于目標(biāo)被暫時遮擋的情況,通過設(shè)定目標(biāo)狀態(tài)為暫時丟失狀態(tài),并以上一次目標(biāo)的位置和速度繼續(xù)對后續(xù)的目標(biāo)位置進(jìn)行預(yù)測,在后續(xù)圖像中可以再次重新找回目標(biāo)。在攝像機(jī)控制時,采取估計(jì)提前量的控制策略也對跟蹤有很大的幫助。控制攝像機(jī),使目標(biāo)提前擺到視野中目標(biāo)運(yùn)動方向的另一側(cè),可以為以后的跟蹤贏得更多的跟蹤時間和機(jī)會。在本實(shí)驗(yàn)序列中尤為明顯,目標(biāo)基本上保持由左上向右下運(yùn)動的趨勢,根據(jù)對目標(biāo)速度的估計(jì),則攝像機(jī)提前將目標(biāo)定為視野中心偏上偏左的區(qū)域,對目標(biāo)運(yùn)動加提前估計(jì)量。成都慧視的跟蹤版是國產(chǎn)化的!青海智能化目標(biāo)跟蹤
RV1126搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識別與跟蹤。青海智能化目標(biāo)跟蹤
設(shè)想這樣一個場景:孫悟空在飛行過程中完成了一次變化(這里假設(shè)他變成了一只鳥),但這個變化并不是像西游記拍攝中有煙霧效果完成的,而就是通過身體結(jié)構(gòu)發(fā)生漸變來完成的,這種情況下,檢測器應(yīng)該會在后續(xù)的檢測任務(wù)中失敗,因?yàn)樵O(shè)計(jì)好的檢測器只是為了檢測目標(biāo)孫悟空的存在,孫悟空變身之后已經(jīng)不存在這個目標(biāo),檢測器是不會有火眼金睛繼續(xù)檢測到變化后的孫悟空的。但是,對于跟蹤設(shè)備就不一樣了,跟蹤目標(biāo),哪怕目標(biāo)在跟蹤過程中發(fā)生了巨大變化,這些都是跟蹤設(shè)備的本質(zhì)能力。理想的跟蹤設(shè)備應(yīng)該可以很好的跟上孫悟空漸變的整個過程,并且可以繼續(xù)后面變身之后對鳥的跟蹤。青海智能化目標(biāo)跟蹤