許多生物醫(yī)學成像方式,無論是單光子(共聚焦)或多光子(雙光子),都使用激光作為光源,并需要兼容的熒光染料。熒光染料有自己的激發(fā)波長,它們可以被單個光子以該激發(fā)波長的光子能量激發(fā)(E=hv=h*c/λ);或者是兩個幾乎同時到達的光子,但每個光子的能量約為單光子能量的一半,即雙波長(0.5E->2λ)。前者是單光子顯微鏡原理,后者是雙光子顯微鏡原理。在對同一種熒光染料進行成像時,雙光子與單光子相比可以使用約兩倍波長,因此雙光子的散射較小(波長較長,散射較小),可以更深入地滲透到組織中。雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子。美國熒光雙光子顯微鏡成像原理是什么
通過對微型光學系統(tǒng)的重新設計,F(xiàn)HIRM-TPM 2.0成像視野擴大至420×420平方微米,微型物鏡的工作距離擴展至1毫米,以實現(xiàn)非侵入式成像;嵌入了可拆卸的快速軸向掃描模塊,實現(xiàn)了180微米深度的三維體成像和多平面快速切換的實時成像。該模塊由一個快速的電動變焦透鏡和一對中繼透鏡組成,在不同深度成像時保持放大倍率恒定。其中,變焦模塊重量1.8克,研究人員可根據(jù)實驗需求自由拆卸。此外,新版微型化成像探頭還可整體即時拔插,極大地簡化了實驗操作,避免了長周期實驗時對動物的干擾。在重復裝卸探頭追蹤同一批神經元時,視場旋轉角小于0.07弧度,邊界偏差小于35微米。進口熒光雙光子顯微鏡成像視野一般是多少雙光子顯微鏡還可以對一些具有雙光子特性的染料細胞進行特定實驗;
雙光子顯微鏡是結合了雙光子激發(fā)技術和激光掃描共聚顯微鏡的一種新型熒光顯微鏡,其原理大致是這樣的:首先,讓我們來看看什么是熒光顯微鏡。熒光顯微鏡是以紫外線為光源,照射被檢物體上的熒光物質或是熒光染料,使其發(fā)出熒光。相比普通光學顯微鏡,熒光顯微鏡運用了波長更短的紫外線,再將可見光過濾掉,提高了分辨力率。而當被檢物體過厚時,從不同深度發(fā)出的熒光都會打在物鏡上,使觀察到的像模糊、發(fā)虛,無法清楚的知道被檢物體的結構。而激光掃描共聚顯微鏡就是在熒光顯微鏡的基礎上,增加了激光掃描裝置,從而解決了上述問題。激光共聚掃描顯微鏡脫離了傳統(tǒng)光學顯微鏡的場光源和局部平面成像模式,采用激光束作光源,激光束經照明孔,經由分光鏡反射至物鏡,并聚焦于樣品上,對標本焦平面上每一點進行掃描。組織樣品中的熒光物質受到刺激后發(fā)出的熒光經原來入射光路直接反向回到分光鏡,通過探測孔時先聚焦,然后被光探頭收集,轉化為信號輸送到計算機進行處理。這個裝置能讓通過探測***的只有焦平面上發(fā)出的熒光,使成像更為清晰準確,同時通過改變物鏡的焦距,能對不同焦平面進行掃描,通過計算機繪出普通顯微鏡無法觀測的三維圖像。
雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有 100 飛秒,而其周期可以達到 80至100兆赫茲。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時,物鏡的焦點處的光子密度是比較高的,雙光子激發(fā)只發(fā)生在物鏡的焦點上,所以雙光子顯微鏡不需要共聚焦***,提高了熒光檢測效率。雙光子顯微鏡的探測器,該怎么選用?
目前,世界各國的腦科學研究如火如荼,中國的腦計劃也即將啟動。其中,關于全景式解析腦連接圖譜和功能動態(tài)圖譜的研究成為重點研究方向,而如何打破尺度壁壘,融合微觀神經元和神經突觸活動與大腦整體的信息處理和個體行為信息,是領域內亟待解決的一個關鍵挑戰(zhàn)。2021年1月6日,由北京大學分子醫(yī)學研究所牽頭,聯(lián)合北大信息科學技術學院電子學系、工學院以及中國人民******醫(yī)學科學院等組成的跨學科團隊,在NatureMethods在線發(fā)表題為“Miniaturetwo-photonmicroscopyforenlargedfield-of-view,multi-plane,andlong-termbrainimaging”的文章。文中報道了第二代微型化雙光子熒光顯微鏡FHIRM-TPM2.0,其成像視野是該團隊于2017年發(fā)布的低1代微型化顯微鏡的7.8倍,同時具備三維成像能力,獲取了小鼠在自由運動行為中大腦三維區(qū)域內上千個神經元清晰穩(wěn)定的動態(tài)功能圖像,并且實現(xiàn)了針對同一批神經元長達一個月的追蹤記錄。雙光子顯微鏡可以在小鼠的的任何部位進行有生命體成像。國外雙光子顯微鏡成像視野
雙光子顯微鏡非常適合對細胞組織進行長時間在體成像。美國熒光雙光子顯微鏡成像原理是什么
雙光子顯微鏡在各領域研究中已有許多成功實例;生物領域:貝爾實驗室的Svoboda等人研究了大腦皮層神經元細胞內鈣離子動力學情形。利用雙光子顯微鏡觀察到的現(xiàn)象證明了鈣離子的增加依賴于肌體觸發(fā)的鈉離子作用電勢。信息領域:美國科學家Rentzepis提出了一種在現(xiàn)有二維光盤的基礎上將數(shù)據(jù)儲存擴展到三維空間。由于雙光子激發(fā)具有作用精細體積小的特點,避免了層與層之間的互相干擾,較大地提高了數(shù)據(jù)儲存密度。雙光子顯微鏡已延伸到各個領域研究中,它能對樣品進行三維觀察,其基礎雙光子激發(fā)效應也具有極高的應用價值。我們可以相信,隨著科技不斷發(fā)展,其他技術的不斷結合,雙光子顯微鏡將得到更大的發(fā)展與更廣的應用。美國熒光雙光子顯微鏡成像原理是什么