針對微米級工業(yè)薄膜厚度測量,開發(fā)了一種基于寬光譜干涉的反射式法測量方法,并研制了適用于工業(yè)應用的小型薄膜厚度測量系統(tǒng),考慮了成本、穩(wěn)定性、體積等因素要求。該系統(tǒng)結(jié)合了薄膜干涉和光譜共聚焦原理,采用波長分辨下的薄膜反射干涉光譜模型,利用經(jīng)典模態(tài)分解和非均勻傅里葉變換的思想,提出了一種基于相位功率譜分析的膜厚解算算法。該算法能夠有效利用全光譜數(shù)據(jù)準確提取相位變化,抗干擾能力強,能夠排除環(huán)境噪聲等假頻干擾。經(jīng)過對PVC標準厚度片、PCB板芯片膜層及鍺基SiO2膜層的測量實驗驗證,結(jié)果表明該測厚系統(tǒng)具有1~75微米厚度的測量量程和微米級的測量不確定度,而且無需對焦,可以在10ms內(nèi)完成單次測量,滿足工業(yè)級測量需要的高效便捷的應用要求。這種膜厚儀可以測量大氣壓下 。小型膜厚儀按需定制
目前,常用的顯微干涉方式主要有Mirau和Michelson兩種方式。Mirau型顯微干涉結(jié)構(gòu)中,物鏡和被測樣品之間有兩塊平板,一塊涂覆高反射膜的平板作為參考鏡,另一塊涂覆半透半反射膜的平板作為分光棱鏡。由于參考鏡位于物鏡和被測樣品之間,物鏡外殼更加緊湊,工作距離相對較短,倍率一般為10-50倍。Mirau顯微干涉物鏡的參考端使用與測量端相同的顯微物鏡,因此不存在額外的光程差,因此是常用的顯微干涉測量方法之一。Mirau顯微干涉結(jié)構(gòu)中,參考鏡位于物鏡和被測樣品之間,且物鏡外殼更加緊湊,工作距離相對較短,倍率一般為10-50倍。Mirau顯微干涉物鏡的參考端使用與測量端相同的顯微物鏡,因此不存在額外的光程差,同時該結(jié)構(gòu)具有高分辨率和高靈敏度等特點,適用于微小樣品的測量。因此,在生物醫(yī)學、半導體工業(yè)等領(lǐng)域得到廣泛應用。品牌膜厚儀廠家供應隨著技術(shù)的進步和應用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提升和擴展。
薄膜材料的厚度在納米級薄膜的各項相關(guān)參數(shù)中,是制備和設(shè)計中一個重要的參量,也是決定薄膜性質(zhì)和性能的關(guān)鍵參量之一。然而,由于其極小尺寸及表面效應的影響,納米級薄膜的厚度準確測量變得困難。科研技術(shù)人員通過不斷的探索研究,提出了新的薄膜厚度測量理論和技術(shù),并將測量方法從手動到自動、有損到無損等不斷改進。對于不同性質(zhì)的薄膜,其適用的厚度測量方案也不相同。在納米級薄膜中,采用光學原理的測量技術(shù)可以實現(xiàn)精度高、速度快、無損測量等優(yōu)點,成為主要的檢測手段。典型的測量方法包括橢圓偏振法、干涉法、光譜法、棱鏡耦合法等。
論文所研究的鍺膜厚度約300nm ,導致其白光干涉輸出光譜只有一個干涉峰,此時常規(guī)基于相鄰干涉峰間距解調(diào)的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長移動的白光干涉測量方案,并設(shè)計搭建了膜厚測量系統(tǒng)。溫度測量實驗結(jié)果表明,峰值波長與溫度變化之間具有良好的線性關(guān)系。利用該測量方案,我們測得實驗用鍺膜的厚度為338.8nm,實驗誤差主要來自于溫度控制誤差和光源波長漂移。論文通過對納米級薄膜厚度的測量方案研究,實現(xiàn)了對鍺膜和金膜的厚度測量。論文主要的創(chuàng)新點是提出了白光干涉單峰值波長移動的解調(diào)方案,并將其應用于極短光程差的測量。白光干涉膜厚儀的應用非常廣,特別是在半導體、光學、電子和化學等領(lǐng)域。
白光干涉光譜分析是目前白光干涉測量的一個重要方向 ,此項技術(shù)主要是利用光譜儀將對條紋的測量轉(zhuǎn)變成為對不同波長光譜的測量 。通過分析被測物體的光譜特性,就能夠得到相應的長度信息和形貌信息。相比于白光掃描干涉術(shù),它不需要大量的掃描過程,因此提高了測量效率,而且也減小了環(huán)境對它的影響。此項技術(shù)能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度。白干干涉光譜法是基于頻域干涉的理論,采用白光作為寬波段光源,經(jīng)過分光棱鏡,被分成兩束光,這兩束光分別入射到參考面和被測物體,反射回來后經(jīng)過分光棱鏡合成后,由色散元件分光至探測器,記錄頻域上的干涉信號。此光譜信號包含了被測表面的信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在這光譜信號當中。這樣就把白光干涉的精度和光譜測量的速度結(jié)合起來,形成了一種精度高而且速度快的測量方法。白光干涉膜厚測量技術(shù)的優(yōu)化需要對實驗方法和算法進行改進。小型膜厚儀產(chǎn)品原理
隨著技術(shù)的不斷進步和應用領(lǐng)域的擴展,白光干涉膜厚儀的性能和功能將得到進一步提高。小型膜厚儀按需定制
薄膜作為重要元件 ,通常使用金屬、合金、化合物、聚合物等作為其主要基材,品類涵蓋光學膜、電隔膜、阻隔膜、保護膜、裝飾膜等多種功能性薄膜,廣泛應用于現(xiàn)代光學、電子、醫(yī)療、能源、建材等技術(shù)領(lǐng)域。常用薄膜的厚度范圍從納米級到微米級不等。納米和亞微米級薄膜主要是基于干涉效應調(diào)制的光學薄膜,包括各種增透增反膜、偏振膜、干涉濾光片和分光膜等。部分薄膜經(jīng)特殊工藝處理后還具有耐高溫、耐腐蝕、耐磨損等特性,對通訊、顯示、存儲等領(lǐng)域內(nèi)光學儀器的質(zhì)量起決定性作用[1-3],如平面顯示器使用的ITO鍍膜,太陽能電池表面的SiO2減反射膜等。微米級以上的薄膜以工農(nóng)業(yè)薄膜為主,多使用聚酯材料,具有易改性、可回收、適用范圍廣等特點。例如6微米厚度以下的電容器膜,20微米厚度以下的大部分包裝印刷用薄膜,25~38微米厚的建筑玻璃貼膜及汽車貼膜,以及厚度為25~65微米的防偽標牌及拉線膠帶等。微米級薄膜利用其良好的延展、密封、絕緣特性,遍及食品包裝、表面保護、磁帶基材、感光儲能等應用市場,加工速度快,市場占比高。小型膜厚儀按需定制