氣力輸送系統(tǒng):解決物料輸送難題,提升生產(chǎn)效率
稱重配料控制系統(tǒng):精確配料,提升生產(chǎn)質(zhì)量與效率
革新配料行業(yè),稱重配料助力企業(yè)提升生產(chǎn)效率
氣力輸送:解決物料輸送難題,提升生產(chǎn)效率的利器
從開(kāi)始到驗(yàn)收,江蘇惟德如何完成一整套氣力輸送系統(tǒng)?
?哪些物料適合氣力輸送
氣力輸送系統(tǒng)的優(yōu)點(diǎn)以及發(fā)展前景介紹
關(guān)于稱重配料系統(tǒng)的應(yīng)用知識(shí)介紹
影響稱重配料系統(tǒng)的精度有哪些
氣力輸送系統(tǒng)的裝置特點(diǎn)
在激光慣性約束聚變(ICF)物理實(shí)驗(yàn)中,靶丸殼層折射率、厚度以及其分布參數(shù)是非常關(guān)鍵的參數(shù)。因此,實(shí)現(xiàn)對(duì)靶丸殼層折射率、厚度及其分布的精密測(cè)量對(duì)精密ICF物理實(shí)驗(yàn)研究非常重要。由于靶丸尺寸微小、結(jié)構(gòu)特殊、測(cè)量精度要求高,因此如何實(shí)現(xiàn)對(duì)靶丸殼層折射率及其厚度分布的精密測(cè)量是靶參數(shù)測(cè)量技術(shù)研究中的重要內(nèi)容。本文針對(duì)這一需求,開(kāi)展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測(cè)量技術(shù)研究。精確測(cè)量靶丸殼層折射率、厚度及其分布是激光慣性約束聚變中至關(guān)重要的,對(duì)于ICF物理實(shí)驗(yàn)的研究至關(guān)重要。由于靶丸特殊的結(jié)構(gòu)和微小的尺寸,以及測(cè)量的高精度要求,如何實(shí)現(xiàn)靶丸殼層折射率及其厚度分布的精密測(cè)量是靶參數(shù)測(cè)量技術(shù)研究中的重要目標(biāo)。本文就此需求開(kāi)展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測(cè)量技術(shù)的研究。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展。測(cè)量膜厚儀產(chǎn)品使用誤區(qū)
對(duì)同一靶丸相同位置進(jìn)行白光垂直掃描干涉 ,圖4-3是靶丸的垂直掃描干涉示意圖,通過(guò)控制光學(xué)輪廓儀的運(yùn)動(dòng)機(jī)構(gòu)帶動(dòng)干涉物鏡在垂直方向上的移動(dòng),從而測(cè)量到光線穿過(guò)靶丸后反射到參考鏡與到達(dá)基底直接反射回參考鏡的光線之間的光程差,顯然,當(dāng)一束平行光穿過(guò)靶丸后,偏離靶丸中心越遠(yuǎn)的光線,測(cè)量到的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度,當(dāng)垂直穿過(guò)靶丸中心的光線測(cè)得的光程差才對(duì)應(yīng)靶丸的上、下殼層的厚度。測(cè)量膜厚儀產(chǎn)品使用誤區(qū)操作需要一定的專業(yè)技能和經(jīng)驗(yàn),需要進(jìn)行充分的培訓(xùn)和實(shí)踐。
常用白光垂直掃描干涉系統(tǒng)的原理:入射的白光光束通過(guò)半反半透鏡進(jìn)入到顯微干涉物鏡后,被分光鏡分成兩部分,一個(gè)部分入射到固定的參考鏡,一部分入射到樣品表面,當(dāng)參考鏡表面和樣品表面的反射光通過(guò)分光鏡后,再次匯聚產(chǎn)生干涉條紋,干涉光通過(guò)透鏡后,利用電荷耦合器(CCD)可探測(cè)整個(gè)視場(chǎng)內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺(tái)帶動(dòng)干涉鏡頭或樣品臺(tái)Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對(duì)應(yīng)點(diǎn)的光強(qiáng)隨光程差變化曲線,可得該點(diǎn)的Z向相對(duì)位移;然后,由CCD圖像中每個(gè)像素點(diǎn)光強(qiáng)最大值對(duì)應(yīng)的Z向位置獲得被測(cè)樣品表面的三維形貌。
在白光反射光譜探測(cè)模塊中,入射光經(jīng)過(guò)分光鏡1分光后 ,一部分光通過(guò)物鏡聚焦到靶丸表面 ,靶丸殼層上、下表面的反射光經(jīng)過(guò)物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達(dá)光譜儀探測(cè)器,可實(shí)現(xiàn)靶丸殼層白光干涉光譜的測(cè)量,一部分光到達(dá)CCD探測(cè)器,可獲得靶丸表面的光學(xué)圖像。靶丸吸附轉(zhuǎn)位模塊和三維運(yùn)動(dòng)模塊分別用于靶丸的吸附定位以及靶丸特定角度轉(zhuǎn)位以及靶丸位置的輔助調(diào)整,測(cè)量過(guò)程中,將靶丸放置于軸系吸嘴前端,通過(guò)微型真空泵負(fù)壓吸附于吸嘴上;然后,移動(dòng)位移平臺(tái),將靶丸移動(dòng)至CCD視場(chǎng)中心,通過(guò)Z向位移臺(tái),使靶丸表面成像清晰;利用光譜儀探測(cè)靶丸殼層的白光反射光譜;靶丸在軸系的帶動(dòng)下,平穩(wěn)轉(zhuǎn)位到特定角度,由于軸系的回轉(zhuǎn)誤差,轉(zhuǎn)位后靶丸可能偏移CCD視場(chǎng)中心,此時(shí)可通過(guò)調(diào)整軸系前端的調(diào)心結(jié)構(gòu),使靶丸定點(diǎn)位于視場(chǎng)中心并采集其白光反射光譜;重復(fù)以上步驟,可實(shí)現(xiàn)靶丸特定位置或圓周輪廓白光反射光譜數(shù)據(jù)的測(cè)量。為減少外界干擾和震動(dòng)而引起的測(cè)量誤差,該裝置放置于氣浮平臺(tái)上,通過(guò)高性能的隔振效果可保證測(cè)量結(jié)果的穩(wěn)定性。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展 。
薄膜是一種特殊的二維材料,由分子、原子或離子沉積在基底表面形成。近年來(lái),隨著材料科學(xué)和鍍膜技術(shù)的不斷發(fā)展,厚度在納米量級(jí)(幾納米到幾百納米范圍內(nèi))的薄膜研究和應(yīng)用迅速增加。與體材料相比,納米薄膜的尺寸很小,表面積與體積的比值增大,因而表面效應(yīng)所表現(xiàn)出來(lái)的性質(zhì)非常突出,對(duì)于光學(xué)性質(zhì)和電學(xué)性質(zhì)等具有許多獨(dú)特的表現(xiàn)。納米薄膜在傳統(tǒng)光學(xué)領(lǐng)域中的應(yīng)用越來(lái)越廣,尤其是在光通訊、光學(xué)測(cè)量、傳感、微電子器件、醫(yī)學(xué)工程等領(lǐng)域有更為廣闊的應(yīng)用前景??偨Y(jié),白光干涉膜厚儀是一種應(yīng)用廣、具有高精度和可靠性的薄膜厚度測(cè)量?jī)x器。國(guó)內(nèi)膜厚儀按需定制
白光干涉膜厚儀的應(yīng)用非常廣,特別是在半導(dǎo)體、光學(xué)、電子和化學(xué)等領(lǐng)域。測(cè)量膜厚儀產(chǎn)品使用誤區(qū)
利用包絡(luò)線法計(jì)算薄膜的光學(xué)常數(shù)和厚度,但還存在很多不足,包絡(luò)線法需要產(chǎn)生干涉波動(dòng),要求在測(cè)量波段內(nèi)存在多個(gè)干涉極值點(diǎn),且干涉極值點(diǎn)足夠多,精度才高。理想的包絡(luò)線是根據(jù)聯(lián)合透射曲線的切點(diǎn)建立的,在沒(méi)有正確方法建立包絡(luò)線時(shí),通常使用拋物線插值法建立,這樣造成的誤差較大。包絡(luò)法對(duì)測(cè)量對(duì)象要求高,如果薄膜較薄或厚度不足情況下,會(huì)造成干涉條紋減少,干涉波峰個(gè)數(shù)較少,要利用干涉極值點(diǎn)建立包絡(luò)線就越困難,且利用拋物線插值法擬合也很困難,從而降低該方法的準(zhǔn)確度。其次,薄膜吸收的強(qiáng)弱也會(huì)影響該方法的準(zhǔn)確度,對(duì)于吸收較強(qiáng)的薄膜,隨干涉條紋減少,極大值與極小值包絡(luò)線逐漸匯聚成一條曲線,該方法就不再適用。因此,包絡(luò)法適用于膜層較厚且弱吸收的樣品。測(cè)量膜厚儀產(chǎn)品使用誤區(qū)