基于白光干涉光譜單峰值波長移動的鍺膜厚度測量方案研究:在對比研究目前常用的白光干涉測量方案的基礎上,我們發(fā)現(xiàn)當兩干涉光束的光程差非常小導致其干涉光譜只有一個干涉峰時,常用的基于兩相鄰干涉峰間距的解調方案不再適用。為此,我們提出了適用于極小光程差并基于干涉光譜單峰值波長移動的測量方案。干涉光譜的峰值波長會隨著光程差的增大出現(xiàn)周期性的紅移和藍移,當光程差在較小范圍內變化時,峰值波長的移動與光程差成正比。根據(jù)這一原理,搭建了光纖白光干涉溫度傳感系統(tǒng)對這一測量解調方案進行驗證,得到了光纖端面半導體鍺薄膜的厚度。實驗結果顯示鍺膜的厚度為,與臺階儀測量結果存在,這是因為薄膜表面本身并不光滑,臺階儀的測量結果只能作為參考值。鍺膜厚度測量誤差主要來自光源的波長漂移和溫度控制誤差。膜厚儀依賴于膜層和底部材料的反射率和相位差來實現(xiàn)這一目的。膜厚儀設備生產(chǎn)
白光干涉在零光程差處,出現(xiàn)零級干涉條紋,隨著光程差的增加,光源譜寬范圍內的每條譜線各自形成的干涉條紋之間互有偏移,疊加的整體效果使條紋對比度下降。測量精度高,可以實現(xiàn)測量,采用白光干涉原理的測量系統(tǒng)的抗干擾能力強,動態(tài)范圍大,具有快速檢測和結構緊湊等優(yōu)點。普通的激光干涉與白光干涉之間雖然有差別,但也有許多相似之處。可以說,白光干涉實際上就是將白光看作一系列理想的單色光在時域上的相干疊加,在頻域上觀察到的就是不同波長對應的干涉光強變化曲線。薄膜干涉膜厚儀詳情它可以用不同的軟件進行數(shù)據(jù)處理和分析,比如建立數(shù)據(jù)庫、統(tǒng)計數(shù)據(jù)等。
白光光譜法具有測量范圍大、連續(xù)測量時波動范圍小的優(yōu)點,可以解決干涉級次模糊識別的問題。但在實際測量中,由于誤差、儀器誤差和擬合誤差等因素的影響,干涉級次的測量精度仍然受到限制,會出現(xiàn)干擾級次的誤判和干擾級次的跳變現(xiàn)象。這可能導致計算得出的干擾級次m值與實際譜峰干涉級次m'(整數(shù))之間存在誤差。因此,本文設計了以下校正流程圖,基于干涉級次的連續(xù)特性得到了靶丸殼層光學厚度的準確值。同時,給出了白光干涉光譜測量曲線。
極值法求解過程計算簡單,速度快,同時能確定薄膜的多個光學常數(shù)并解決多值性問題,測試范圍廣,但沒有考慮薄膜均勻性和基底色散的因素,因此精度不夠高。此外,由于受曲線擬合精度的限制,該方法對膜厚的測量范圍有要求,通常用于測量薄膜厚度大于200納米且小于10微米的情況,以確保光譜信號中的干涉波峰數(shù)適當。全光譜擬合法是基于客觀條件或基本常識來設置每個擬合參數(shù)上限、下限,并為該區(qū)域的薄膜生成一組或多組光學參數(shù)及厚度的初始值,引入適合的色散模型,再通過麥克斯韋方程組的推導得到結果。該方法能判斷預設的初始值是否為要測量的薄膜參數(shù),建立評價函數(shù)來計算透過率/反射率與實際值之間的偏差。只有當計算出的透過率/反射率與實際值之間的偏差很小時,我們才能認為預設的初始值就是要測量的薄膜參數(shù)。該儀器的使用需要一定的專業(yè)技能和經(jīng)驗,操作前需要進行充分的培訓和實踐。
為限度提高靶丸內爆壓縮效率,期望靶丸所有幾何參數(shù)、物性參數(shù)均為理想球對稱狀態(tài)。因此,需要對靶丸殼層厚度分布進行精密的檢測。靶丸殼層厚度常用的測量手法有X射線顯微輻照法、激光差動共焦法、白光干涉法等。下面分別介紹了各個方法的特點與不足,以及各種測量方法的應用領域。白光干涉法以白光作為光源,寬光譜的白光準直后經(jīng)分光棱鏡分成兩束光,一束光入射到固定參考鏡。一束光入射到待測樣品。由計算機控制壓電陶瓷(PZT)沿Z軸方向進行掃描,當兩路之間的光程差為零時,在分光棱鏡匯聚后再次被分成兩束,一束光通過光纖傳輸,并由光譜儀收集,另一束則被傳遞到CCD相機,用于樣品觀測。利用光譜分析算法對干涉信號圖進行分析得到薄膜的厚度。該方法能應用靶丸殼層壁厚的測量,但是該測量方法需要已知靶丸殼層材料的折射率,同時,該方法也難以實現(xiàn)靶丸殼層厚度分布的測量??梢耘浜喜煌能浖M行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫、統(tǒng)計數(shù)據(jù)等。膜厚儀設備生產(chǎn)
精度高的白光干涉膜厚儀通常采用Michelson干涉儀的結構。膜厚儀設備生產(chǎn)
干涉測量法是基于光的干涉原理實現(xiàn)對薄膜厚度測量的光學方法,是一種高精度的測量技術。采用光學干涉原理的測量系統(tǒng)一般具有結構簡單,成本低廉,穩(wěn)定性好,抗干擾能力強,使用范圍廣等優(yōu)點。對于大多數(shù)的干涉測量任務,都是通過薄膜表面和基底表面之間產(chǎn)生的干涉條紋的形狀和分布規(guī)律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達到測量目的。光學干涉測量方法的測量精度可達到甚至優(yōu)于納米量級,而利用外差干涉進行測量,其精度甚至可以達到10-3nm量級。根據(jù)所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實現(xiàn)對靜態(tài)信號的測量,只能測量輸出信號的變化量或者是連續(xù)信號的變化,即只能實現(xiàn)相對測量。而白光干涉是通過對干涉信號中心條紋的有效識別來實現(xiàn)對物理量的測量,是一種測量方式,在薄膜厚度的測量中得到了廣泛的應用。膜厚儀設備生產(chǎn)