自上世紀60年代開始,西方的工業(yè)生產線廣泛應用基于X及β射線、近紅外光源開發(fā)的在線薄膜測厚系統(tǒng)。隨著質檢需求的不斷增長,20世紀70年代后,電渦流、超聲波、電磁電容、晶體振蕩等多種膜厚測量技術相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術的出現,光學檢測技術也不斷更新迭代,以橢圓偏振法和光度法為主導的高精度、低成本、輕便、高速穩(wěn)固的光學檢測技術迅速占領日用電器和工業(yè)生產市場,并發(fā)展出了個性化定制產品的能力。對于市場占比較大的微米級薄膜,除了要求測量系統(tǒng)具有百納米級的測量準確度和分辨率之外,還需要在存在不規(guī)則環(huán)境干擾的工業(yè)現場下具備較高的穩(wěn)定性和抗干擾能力。標準樣品的選擇和使用對于保持儀器準確度至關重要。防水膜厚儀找哪家
白光干涉光譜分析是目前白光干涉測量的一個重要方向,此項技術主要是利用光譜儀將對條紋的測量轉變成為對不同波長光譜的測量。通過分析被測物體的光譜特性,就能夠得到相應的長度信息和形貌信息。相比于白光掃描干涉術,它不需要大量的掃描過程,因此提高了測量效率,而且也減小了環(huán)境對它的影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度。白光干涉光譜法是基于頻域干涉的理論,采用白光作為寬波段光源,經過分光棱鏡,被分成兩束光,這兩束光分別入射到參考面和被測物體,反射回來后經過分光棱鏡合成后,由色散元件分光至探測器,記錄頻域上的干涉信號。此光譜信號包含了被測表面的信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在這光譜信號當中。這樣就把白光干涉的精度和光譜測量的速度結合起來,形成了一種精度高而且速度快的測量方法。納米級膜厚儀制造廠家白光干涉膜厚儀需要進行校準,并選擇合適的標準樣品。
通過基于表面等離子體共振傳感的測量方案,結合共振曲線的三個特征參數,即共振角、半高寬和反射率小值,反演計算可以精確地得到待測金屬薄膜的厚度和介電常數。該方案操作簡單,利用Kretschmann型結構的表面等離子體共振實驗系統(tǒng)即可得到共振曲線,從而得到金膜的厚度。由于該方案為一種強度測量方案,受環(huán)境影響較大,測量結果存在多值性問題,因此研究人員進一步對偏振外差干涉的改進方案進行了理論分析,從P光和S光之間相位差的變化來實現厚度測量。
本文研究的鍺膜厚度約為300nm,導致白光干涉輸出的光譜只有一個干涉峰,無法采用常規(guī)的基于相鄰干涉峰間距解調的方案,如峰峰值法等。為此,研究人員提出了一種基于單峰值波長移動的白光干涉測量方案,并設計制作了膜厚測量系統(tǒng)。經實驗證明,峰值波長和溫度變化之間存在很好的線性關系。利用該方案,研究人員成功測量了實驗用鍺膜的厚度為338.8nm,實驗誤差主要源于溫度控制誤差和光源波長漂移。該論文通過對納米級薄膜厚度測量方案的研究,實現了對鍺膜和金膜厚度的測量,并主要創(chuàng)新點在于提出了基于白光干涉單峰值波長移動的解調方案,并將其應用于極短光程差的測量??傊坠飧缮婺ず駜x是一種應用很廣的測量薄膜厚度的儀器。
在納米量級薄膜的各項相關參數中,薄膜材料的厚度是薄膜設計和制備過程中的重要參數,是決定薄膜性質和性能的基本參量之一,它對于薄膜的力學、光學和電磁性能等都有重要的影響[3]。但是由于納米量級薄膜的極小尺寸及其突出的表面效應,使得對其厚度的準確測量變得困難。經過眾多科研技術人員的探索和研究,新的薄膜厚度測量理論和測量技術不斷涌現,測量方法實現了從手動到自動,有損到無損測量。由于待測薄膜材料的性質不同,其適用的厚度測量方案也不盡相同。對于厚度在納米量級的薄膜,利用光學原理的測量技術應用。相比于其他方法,光學測量方法因為具有精度高,速度快,無損測量等優(yōu)勢而成為主要的檢測手段。其中具有代表性的測量方法有干涉法,光譜法,橢圓偏振法,棱鏡耦合法等。操作之前需要專業(yè)技能和經驗的培訓和實踐。小型膜厚儀生產商
總的來說,白光干涉膜厚儀是一種在薄膜厚度測量領域廣泛應用的儀器。防水膜厚儀找哪家
薄膜在現代光學、電子、醫(yī)療、能源和建材等技術領域得到廣泛應用,可以提高器件性能。但是由于薄膜制備工藝和生產環(huán)境等因素的影響,成品薄膜存在厚度分布不均和表面粗糙度大等問題,導致其光學和物理性能無法達到設計要求,嚴重影響其性能和應用。因此,需要開發(fā)出精度高、體積小、穩(wěn)定性好的測量系統(tǒng)以滿足微米級工業(yè)薄膜的在線檢測需求。當前的光學薄膜測厚方法無法同時兼顧高精度、輕小體積和合理的成本,而具有納米級測量分辨率的商用薄膜測厚儀器價格昂貴、體積大,無法滿足工業(yè)生產現場的在線測量需求。因此,提出了一種基于反射光譜原理的高精度工業(yè)薄膜厚度測量解決方案,研發(fā)了小型化、低成本的薄膜厚度測量系統(tǒng),并提出了一種無需標定樣品的高效穩(wěn)定的膜厚計算算法。該系統(tǒng)可以實現微米級工業(yè)薄膜的厚度測量。防水膜厚儀找哪家