薄膜在現(xiàn)代光學(xué)、電子、醫(yī)療、能源和建材等技術(shù)領(lǐng)域得到廣泛應(yīng)用,可以提高器件性能。但是由于薄膜制備工藝和生產(chǎn)環(huán)境等因素的影響,成品薄膜存在厚度分布不均和表面粗糙度大等問題,導(dǎo)致其光學(xué)和物理性能無法達到設(shè)計要求,嚴重影響其性能和應(yīng)用。因此,需要開發(fā)出精度高、體積小、穩(wěn)定性好的測量系統(tǒng)以滿足微米級工業(yè)薄膜的在線檢測需求。當(dāng)前的光學(xué)薄膜測厚方法無法同時兼顧高精度、輕小體積和合理的成本,而具有納米級測量分辨率的商用薄膜測厚儀器價格昂貴、體積大,無法滿足工業(yè)生產(chǎn)現(xiàn)場的在線測量需求。因此,提出了一種基于反射光譜原理的高精度工業(yè)薄膜厚度測量解決方案,研發(fā)了小型化、低成本的薄膜厚度測量系統(tǒng),并提出了一種無需標(biāo)定樣品的高效穩(wěn)定的膜厚計算算法。該系統(tǒng)可以實現(xiàn)微米級工業(yè)薄膜的厚度測量??傊坠飧缮婺ず駜x是一種應(yīng)用很廣的測量薄膜厚度的儀器。品牌膜厚儀
白光光譜法具有測量范圍大、連續(xù)測量時波動范圍小的優(yōu)點,可以解決干涉級次模糊識別的問題。但在實際測量中,由于誤差、儀器誤差和擬合誤差等因素的影響,干涉級次的測量精度仍然受到限制,會出現(xiàn)干擾級次的誤判和干擾級次的跳變現(xiàn)象。這可能導(dǎo)致計算得出的干擾級次m值與實際譜峰干涉級次m'(整數(shù))之間存在誤差。因此,本文設(shè)計了以下校正流程圖,基于干涉級次的連續(xù)特性得到了靶丸殼層光學(xué)厚度的準(zhǔn)確值。同時,給出了白光干涉光譜測量曲線。微米級膜厚儀找誰膜厚儀依賴于膜層和底部材料的反射率和相位差來實現(xiàn)這一目的。
光鏡和參考板組成,光源發(fā)出的光經(jīng)過顯微鏡后被分光棱鏡分成兩部分,一束作為參考光入射到參考鏡并反射,另一束作為測量光入射到樣品表面被反射,兩束反射光反射到分光棱鏡并發(fā)生干涉。由于實驗中需要調(diào)節(jié)樣品與被測樣品的角度,以便更好進行測量,5XMichelson型干涉物鏡可以通過其配置的兩個旋鈕進行調(diào)節(jié),旋鈕能夠在較大的范圍內(nèi)調(diào)節(jié)參考鏡角度,可以調(diào)節(jié)到理想角度。光纖在測試系統(tǒng)中負責(zé)傳光,將顯微鏡視場干涉信號傳輸?shù)轿⑿凸庾V儀。系統(tǒng)選用光纖為海洋光學(xué)公司生產(chǎn)的高級光纖組件,光纖連接線的內(nèi)層為硅樹脂包裹的單線鋼圈,外層為諾梅克斯編織物,以求更好地減輕應(yīng)力并起到有效的保護作用。該組件末段是易于操作的金屬環(huán)---高精密度的SMA連接器。光纖一端與適配器連接,另一端與微型光譜儀連接,以將干涉光信號傳入光譜儀中。
白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實現(xiàn)。1983年,BrianCulshaw的研究小組報道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報道。自上世紀(jì)九十年代以來,白光干涉技術(shù)快速發(fā)展,提供了實現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設(shè)計與研制的進步,信號處理新方案的提出,以及傳感器的多路復(fù)用等技術(shù)的發(fā)展,使得白光干涉測量技術(shù)的發(fā)展更加迅速。在半導(dǎo)體、光學(xué)、電子、化學(xué)等領(lǐng)域廣泛應(yīng)用,有助于研究和開發(fā)新產(chǎn)品。
薄膜是一種特殊的微結(jié)構(gòu),在電子學(xué)、摩擦學(xué)、現(xiàn)代光學(xué)等領(lǐng)域得到了廣泛應(yīng)用,因此薄膜的測試技術(shù)變得越來越重要。尤其是在厚度這一特定方向上,尺寸很小,基本上都是微觀可測量的。因此,在微納測量領(lǐng)域中,薄膜厚度的測試是一個非常重要且實用的研究方向。在工業(yè)生產(chǎn)中,薄膜的厚度直接影響薄膜是否能正常工作。在半導(dǎo)體工業(yè)中,膜厚的測量是硅單晶體表面熱氧化厚度以及平整度質(zhì)量控制的重要手段。薄膜的厚度會影響其電磁性能、力學(xué)性能和光學(xué)性能等,因此準(zhǔn)確地測量薄膜的厚度成為一種關(guān)鍵技術(shù)。當(dāng)光路長度增加,儀器的分辨率越高,也越容易受到靜態(tài)振動等干擾因素的影響,需采取一些減小噪聲的措施。高精度膜厚儀推薦
Michelson干涉儀的光路長度是影響儀器精度的重要因素。品牌膜厚儀
傅里葉變換是白光頻域解調(diào)方法中的一種低精度信號解調(diào)方法,起初由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。該解調(diào)方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,并得到待測物理量的信息。傅里葉變換解調(diào)方案的優(yōu)勢是解調(diào)速度快,受干擾信號影響較小,但精度不高。根據(jù)數(shù)字信號處理FFT理論,若輸入光源波長范圍為[λ1,λ2],則所測光程差的理論小分辨率為λ1λ2/(λ2-λ1),因此該方法主要應(yīng)用于解調(diào)精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結(jié)起來是對采集到的光譜信號進行傅里葉變換,然后濾波、提取主頻信號,接著進行逆傅里葉變換、對數(shù)運算,之后取其虛部進行相位反包裹運算,從而通過得到的相位來獲得干涉儀的光程差。經(jīng)實驗證明,該方法測量精度比傅里葉變換方法更高。品牌膜厚儀