靶丸殼層折射率、厚度及其分布參數(shù)是激光慣性約束聚變(ICF)物理實驗中非常關鍵的參數(shù),精密測量靶丸殼層折射率、厚度及其分布對ICF精密物理實驗研究具有非常重要的意義。由于靶丸尺寸微?。▉喓撩琢考墸?、結構特殊(球形結構)、測量精度要求高,如何實現(xiàn)靶丸殼層折射率及其厚度分布的精密測量是靶參數(shù)測量技術研究中重要的研究內(nèi)容。本論文針對靶丸殼層折射率及厚度分布的精密測量需求,開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術研究。白光干涉膜厚測量技術可以通過對干涉圖像的分析實現(xiàn)對薄膜的表面和內(nèi)部結構的聯(lián)合測量和分析。湖南高速膜厚儀
論文主要以半導體鍺和貴金屬金兩種材料為對象,研究了白光干涉法、表面等離子體共振法和外差干涉法實現(xiàn)納米級薄膜厚度準確測量的可行性。由于不同材料薄膜的特性不同,所適用的測量方法也不同。半導體鍺膜具有折射率高,在通信波段(1550nm附近)不透明的特點,選擇采用白光干涉的測量方法;而厚度更薄的金膜的折射率為復數(shù),且能激發(fā)的表面等離子體效應,因而可借助基于表面等離子體共振的測量方法;為了進一步改善測量的精度,論文還研究了外差干涉測量法,通過引入高精度的相位解調(diào)手段,檢測P光與S光之間的相位差提升厚度測量的精度。高采樣速率膜厚儀廠家直銷價格白光干涉膜厚測量技術可以通過對干涉圖像的分析實現(xiàn)對薄膜的形貌測量。
光譜法是以光的干涉效應為基礎的一種薄膜厚度測量方法,分為反射法和透射法兩類[12]。入射光在薄膜-基底-薄膜界面上的反射和透射會引起多光束干涉效應,不同特性的薄膜材料的反射率和透過率曲線是不同的,并且在全光譜范圍內(nèi)與厚度之間是一一對應關系。因此,根據(jù)這一光譜特性可以得到薄膜的厚度以及光學參數(shù)。光譜法的優(yōu)點是可以同時測量多個參數(shù)且可以有效的排除解的多值性,測量范圍廣,是一種無損測量技術;缺點是對樣品薄膜表面條件的依賴性強,測量穩(wěn)定性較差,因而測量精度不高;對于不同材料的薄膜需要使用不同波段的光源等。目前,這種方法主要應用于有機薄膜的厚度測量。
干涉法與分光光度法都是利用相干光形成等厚干涉條紋的原理來確定薄膜厚度和折射率,然而與薄膜自發(fā)產(chǎn)生的等傾干涉不同,干涉法是通過設置參考光路,形成與測量光路間的干涉條紋,因此其相位信息包含兩個部分,分別是由參考平面和測量平面間掃描高度引起的附加相位和由透明薄膜內(nèi)部多次反射引起的膜厚相位。干涉法測量光路使用面陣CCD接收參考平面和測量平面間相干波面的干涉光強分布,不同于以上三種點測量方式,可一次性生成薄膜待測區(qū)域的表面形貌信息,但同時由于存在大量軸向掃描和數(shù)據(jù)解算,完成單次測量的時間相對較長。白光干涉膜厚測量技術可以實現(xiàn)對薄膜的快速測量和分析。
根據(jù)以上分析可知,白光干涉時域解調(diào)方案的優(yōu)點是:①能夠?qū)崿F(xiàn)測量;②抗干擾能力強,系統(tǒng)的分辨率與光源輸出功率的波動,光源的波長漂移以及外界環(huán)境對光纖的擾動等因素無關;③測量精度與零級干涉條紋的確定精度以及反射鏡的精度有關;④結構簡單,成本較低。但是,時域解調(diào)方法需要借助掃描部件移動干涉儀一端的反射鏡來進行相位補償,所以掃描裝置的分辨率將影響系統(tǒng)的精度。采用這種解調(diào)方案的測量分辨率一般是幾個微米,達到亞微米的分辨率,主要受機械掃描部件的分辨率和穩(wěn)定性限制。文獻[46]所報道的位移掃描的分辨率可以達到0.54μm。當所測光程差較小時,F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時時域解調(diào)方案的應用受到限制。白光干涉膜厚測量技術可以應用于納米制造中的薄膜厚度測量。特色服務膜厚儀供應
白光干涉膜厚測量技術可以通過對干涉曲線的分析實現(xiàn)對薄膜的光學參數(shù)測量。湖南高速膜厚儀
常用白光垂直掃描干涉系統(tǒng)的原理示意圖,入射的白光光束通過半反半透鏡進入到顯微干涉物鏡后,被分光鏡分成兩部分,一個部分入射到固定的參考鏡,一部分入射到樣品表面,當參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚發(fā)生干涉,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個視場內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺帶動干涉鏡頭或樣品臺Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對應點的光強隨光程差變化曲線,可得該點的Z向相對位移;然后,由CCD圖像中每個像素點光強最大值對應的Z向位置獲得被測樣品表面的三維形貌。湖南高速膜厚儀