納米壓痕技術(shù)也稱(chēng)深度敏感壓痕技術(shù)(Depth-Sensing Indentation, DSI),是較簡(jiǎn)單的測(cè)試材料力學(xué)性質(zhì)的方法之一,可以在納米尺度上測(cè)量材料的各種力學(xué)性質(zhì),如載荷-位移曲線(xiàn)、彈性模量、硬度、斷裂韌性、應(yīng)變硬化效應(yīng)、粘彈性或蠕變行為等。納米壓痕理論,納米壓痕試驗(yàn)中典型的載荷-位移曲線(xiàn)。在加載過(guò)程中試樣表面首先發(fā)生的是彈性變形,隨著載荷進(jìn)一步提高,塑性變形開(kāi)始出現(xiàn)并逐步增大;卸載過(guò)程主要是彈性變形恢復(fù)的過(guò)程,而塑性變形較終使得樣品表面形成了壓痕。圖中Pmax 為較大載荷,hmax 為較大位移,hf為卸載后的位移,S為卸載曲線(xiàn)初期的斜率。納米硬度的計(jì)算仍采用傳統(tǒng)的硬度公式H =P/A。式中,H 為硬度 (GPa);P 為較大載荷 ( μ N),即上文中的 P max ;A 為壓痕面積的投影(nm2 )。 利用納米力學(xué)測(cè)試,研究人員可揭示材料內(nèi)部缺陷、應(yīng)力分布等關(guān)鍵信息。海南微納米力學(xué)測(cè)試方法
SFM納米力學(xué)測(cè)試。在掃描隧道顯微鏡(STM)發(fā)明以后,基于STM,人們又陸續(xù)發(fā)展一系列相似的掃描成像顯微技術(shù),它們包括原子力顯微鏡(AFM)、摩擦力顯微鏡(FFM)、磁力顯微鏡、靜電力顯微等,統(tǒng)稱(chēng)為掃描力顯微鏡(SFM)。由于這些掃描力顯微鏡成像的工作原理是基于探針與被測(cè)樣品之間的原子力、摩擦力、磁力或靜電力,因此,它們自然地成為測(cè)量探針與被測(cè)樣品之間微觀原子力、摩擦力、磁力或靜電力的有力工具。采用原子力顯微鏡對(duì)飽和鐵轉(zhuǎn)鐵蛋白和脫鐵轉(zhuǎn)鐵蛋白與轉(zhuǎn)鐵蛋白抗體之間的相互作用進(jìn)行研究通過(guò)原子力顯微鏡對(duì)分子間力的曲線(xiàn)進(jìn)行探測(cè),比較飽和鐵轉(zhuǎn)鐵蛋白和脫鐵轉(zhuǎn)鐵蛋白與抗體之間的作用力的差異。河南新能源納米力學(xué)測(cè)試納米力學(xué)測(cè)試在材料設(shè)計(jì)和產(chǎn)品開(kāi)發(fā)中發(fā)揮著重要作用,能夠提供關(guān)鍵的力學(xué)性能參數(shù)。
應(yīng)用舉例:納米纖維拉伸測(cè)試,納米力學(xué)測(cè)試單軸拉伸測(cè)試是納米纖維定量力學(xué)分析較常見(jiàn)的方法。用Pt-EBID將納米纖維兩端分別固定在FT-S微力傳感探針和樣品架上,拉伸直至斷裂。從應(yīng)力-應(yīng)變曲線(xiàn)計(jì)算得到混合納米纖維的平均屈服/極限拉伸強(qiáng)度為375MPa/706Mpa,金納米纖維的平均屈服/極限拉伸強(qiáng)度為451MPa/741Mpa。對(duì)單根納米纖維進(jìn)行各種機(jī)械性能的定量測(cè)試需要通用性極高的儀器。這類(lèi)設(shè)備必須能進(jìn)行納米機(jī)器人制樣和力學(xué)測(cè)試。并且由于納米纖維軸向形變(延長(zhǎng))小,高位移分辨率和優(yōu)異的位置穩(wěn)定性(位置漂移?。?duì)于精確一定測(cè)量是至關(guān)重要的。
將近場(chǎng)聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來(lái)發(fā)展的納米力學(xué)測(cè)試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測(cè)的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時(shí)也將它們統(tǒng)稱(chēng)為接觸共振力顯微術(shù)(contact resonance force microscopy,CRFM)。納米力學(xué)測(cè)試可以用于研究納米材料的界面行為和相互作用,為納米材料的應(yīng)用提供理論基礎(chǔ)。
英國(guó):國(guó)家物理研究所對(duì)各種納米測(cè)量?jī)x器與被測(cè)對(duì)象之間的幾何與物理間的相互作用進(jìn)行了詳盡的研究,繪制了各種納米測(cè)量?jī)x器測(cè)量范圍的理論框架,其研制的微形貌納米測(cè)量?jī)x器測(cè)量范圍是0.01n m~3n m和0.3n m~100n m。Warwick大學(xué)的Chetwynd博士利用X光干涉儀對(duì)長(zhǎng)度標(biāo)準(zhǔn)用的波長(zhǎng)進(jìn)行細(xì)分研究,他利用薄硅片分解和重組X光光束來(lái)分析干涉圖形,從干涉儀中提取的干涉條紋與硅晶格有相等的間距,該間距接近0.2nm,他依此作為校正精密位移傳感器的一種亞納米尺度。Queensgate儀器公司設(shè)計(jì)了一套納米定位裝置,它通過(guò)壓電驅(qū)動(dòng)元件和電容位置傳感器相結(jié)合的控制裝置達(dá)到納米級(jí)的分辨率和定位精度。納米力學(xué)測(cè)試可以應(yīng)用于納米材料的力學(xué)模擬和仿真,加速納米材料的研發(fā)和應(yīng)用過(guò)程。貴州微納米力學(xué)測(cè)試
納米力學(xué)測(cè)試應(yīng)用于半導(dǎo)體、生物醫(yī)學(xué)、能源等多個(gè)領(lǐng)域,具有普遍前景。海南微納米力學(xué)測(cè)試方法
微納米材料力學(xué)性能測(cè)試系統(tǒng)可移動(dòng)范圍:250mm x 150mm;步長(zhǎng)分辨率:50nm;Encoder 分辨率:500nm;較大移動(dòng)速率:30mm/S;Z stage。可移動(dòng)范圍:50mm;步長(zhǎng)分辨率:3nm;較大移動(dòng)速率:1.9mm/S。原位成像掃描范圍。XY 方向:60μm x 60μm;Z 方向:4μm;成像分辨率:256 x 256 像素點(diǎn);掃描速率:3Hz;壓頭原位的位置控制精度:<+/-10nm;較大樣品尺寸:150mm- 200mm。納米壓痕試驗(yàn):測(cè)試硬度及彈性模量(包括隨著連續(xù)壓入深度的變化獲得硬度和彈性模量的分布)以及斷裂韌性、蠕變、應(yīng)力釋放等。 納米劃痕試驗(yàn):獲得摩擦系數(shù)、臨界載荷、膜基結(jié)合性質(zhì)。納米摩擦磨損試驗(yàn) :評(píng)價(jià)抗磨損能力。在壓痕、劃痕、磨損前后的SPM原位掃描探針成像: 獲得微區(qū)的形貌組織結(jié)構(gòu)。海南微納米力學(xué)測(cè)試方法