機械式應(yīng)變測量方法:機械式應(yīng)變測量已經(jīng)有很長的歷史,其主要利用百分表或千分表測量變形前后測試標(biāo)距內(nèi)的距離變化而得到構(gòu)件測試標(biāo)距內(nèi)的平均應(yīng)變。工程測量中使用的機械式應(yīng)變測量儀器主要包括手持應(yīng)變儀和千分表引伸計。機械式應(yīng)變測量方法主要的特點是讀數(shù)直觀、環(huán)境適應(yīng)能力強、可重復(fù)性使用等。但需要人工讀數(shù)、費時費力、精度差,對于應(yīng)變測點數(shù)量眾多的橋梁靜載試驗顯然不合適。因此,除了少數(shù)室內(nèi)模型試驗的特殊需要,工程結(jié)構(gòu)中很少使用。 在工業(yè)制造中,光學(xué)非接觸應(yīng)變測量技術(shù)可用于汽車、航空、造船等領(lǐng)域的結(jié)構(gòu)安全測試和質(zhì)量檢測。西安三維全場非接觸測量系統(tǒng)
光學(xué)應(yīng)變測量技術(shù),一種高效且無損的非接觸式測量方法,被普遍應(yīng)用于多個領(lǐng)域以獲取物體的應(yīng)變分布信息。其工作原理基于光學(xué)干涉現(xiàn)象,通過精確測量物體表面的光學(xué)路徑差,實現(xiàn)對物體應(yīng)變狀態(tài)的準(zhǔn)確捕捉。在物體受到外力作用時,其表面會產(chǎn)生微小的形變,導(dǎo)致光的傳播路徑發(fā)生改變,進而形成干涉圖案。光學(xué)應(yīng)變測量技術(shù)正是通過精密捕捉并分析這些干涉圖案的變化,從而得出物體表面的應(yīng)變分布情況。這種測量方法的優(yōu)點明顯,它不只可以實現(xiàn)無損測量,避免了對被測物體的任何損傷,而且具有極高的測量精度和靈敏度。這使得光學(xué)應(yīng)變測量技術(shù)能夠?qū)崟r、準(zhǔn)確地監(jiān)測物體的應(yīng)變狀態(tài),為深入研究材料的力學(xué)性質(zhì)和結(jié)構(gòu)變化提供了重要的技術(shù)手段。在結(jié)構(gòu)工程領(lǐng)域,光學(xué)應(yīng)變測量技術(shù)可用于實時監(jiān)測建筑物、橋梁等大型結(jié)構(gòu)的應(yīng)變分布,幫助工程師及時發(fā)現(xiàn)潛在的安全隱患,確保結(jié)構(gòu)的安全性能。在生物醫(yī)學(xué)領(lǐng)域,這項技術(shù)可用于精確測量人體組織的應(yīng)變分布,為生物力學(xué)特性的研究和疾病診斷提供有力的支持。 重慶光學(xué)非接觸式應(yīng)變測量光學(xué)應(yīng)變測量和光學(xué)干涉測量在原理和應(yīng)用上有所不同,前者間接推斷應(yīng)力,后者直接測量形變。
金屬應(yīng)變計是一種用于測量物體應(yīng)變的裝置,其實際應(yīng)變計因子可以從傳感器制造商或相關(guān)文檔中獲取,通常約為2。由于應(yīng)變測量通常很小,只有幾個毫應(yīng)變(10?3),因此需要精確測量電阻的微小變化。例如,當(dāng)測試樣本的實際應(yīng)變?yōu)?00毫應(yīng)變時,應(yīng)變計因子為2的應(yīng)變計可以檢測到電阻變化為2(50010??)=。對于120Ω的應(yīng)變計,變化值只為Ω。為了測量如此小的電阻變化,應(yīng)變計采用基于惠斯通電橋的配置概念?;菟雇姌蛴伤膫€相互連接的電阻臂和激勵電壓VEX組成。當(dāng)應(yīng)變計與被測物體一起安裝在電橋的一個臂上時,應(yīng)變計的電阻值會隨著應(yīng)變的變化而發(fā)生微小的變化。這個微小的變化會導(dǎo)致電橋的電壓輸出發(fā)生變化,從而可以通過測量輸出電壓的變化來計算應(yīng)變的大小。除了傳統(tǒng)的應(yīng)變測量方法外,光學(xué)非接觸應(yīng)變測量技術(shù)也越來越受到關(guān)注。這種技術(shù)利用光學(xué)原理來測量材料的應(yīng)變,具有非接觸、高精度和高靈敏度等優(yōu)點。它通常使用光纖光柵傳感器或激光干涉儀等設(shè)備來測量材料表面的位移或形變,從而間接計算出應(yīng)變的大小。這種新興的測量技術(shù)為應(yīng)變測量帶來了新的可能性,并在許多領(lǐng)域中得到了普遍應(yīng)用。
電阻應(yīng)變測量(電測法)是實驗應(yīng)力分析中使用比較廣和適應(yīng)性比較強的方法之一。該方法是利用電阻應(yīng)變計(簡稱應(yīng)變片或電阻片)作為敏感元件,用應(yīng)變儀作為測量儀器,通過測量可以得出受力構(gòu)件上的應(yīng)力、應(yīng)變的一種實驗方法。測量時,將應(yīng)變計牢固地貼在構(gòu)件上,構(gòu)件變形連同應(yīng)變計一起變形,應(yīng)變計的變形產(chǎn)生了電阻的變化,通過測量電橋使這微小的電阻變化轉(zhuǎn)換成電壓或電流的變比,經(jīng)過信號放大,將其變換成構(gòu)件的應(yīng)變值而顯示出來,完成上述轉(zhuǎn)換工作的儀器叫應(yīng)變儀。 三維應(yīng)變測量技術(shù)是一種用于測量物體三維應(yīng)變狀態(tài)的重要工程測量方法。
通過將激光照射到物體表面,并利用CCD相機記錄物體表面散射的光波干涉條紋,來測量物體表面的微小變形。ESPI具有靈敏度高、測量范圍廣、可用于動態(tài)測量等優(yōu)點。光學(xué)非接觸應(yīng)變測量技術(shù)廣泛應(yīng)用于航空航天、汽車工程、材料科學(xué)等領(lǐng)域。在航空航天領(lǐng)域,它用于飛行器的結(jié)構(gòu)健康監(jiān)測;在汽車工業(yè)中,它應(yīng)用于車輛結(jié)構(gòu)件的應(yīng)力分析和安全評估;在材料科學(xué)中,它用于評估不同材料的強度和耐久性,以及材料在各種環(huán)境條件下的應(yīng)變響應(yīng)。綜上所述,光學(xué)非接觸應(yīng)變測量技術(shù)是一種先進、高效的應(yīng)變測量方法,具有廣泛的應(yīng)用前景和重要的科學(xué)價值。光學(xué)非接觸應(yīng)變測量利用光學(xué)原理和方法,在不與被測物體直接接觸的情況下,測量物體的應(yīng)變情況。云南全場三維非接觸式測量系統(tǒng)
三維應(yīng)變測量技術(shù)用于研究新材料力學(xué)性能,如彈性模量、泊松比等,以及材料在受力或變形過程中的失效行為。西安三維全場非接觸測量系統(tǒng)
振弦式應(yīng)變測量傳感器的研究起源于20世紀(jì)30年代,其工作原理如下:鋼弦在一定的張力作用下具有固定的自振頻率,當(dāng)張力發(fā)生變化時其自振頻率也會隨之發(fā)生改變。當(dāng)結(jié)構(gòu)產(chǎn)生應(yīng)變時,安裝在其上的振弦式傳感器內(nèi)的鋼弦張力發(fā)生變化,導(dǎo)致其自振頻率發(fā)生變化。通過測試鋼弦振動頻率的變化值,能夠計算得出測點的應(yīng)力變化值。振弦式應(yīng)變測量傳感器的特點是具有較強的抗干擾能力,在進行遠(yuǎn)距離輸送時信號失真非常小,測量值不受導(dǎo)線電阻變化以及溫度變化的影響,傳感器結(jié)構(gòu)相對簡單、制作與安裝過程比較方便。 西安三維全場非接觸測量系統(tǒng)