為了在航空航天、汽車、焊接工藝等領(lǐng)域的材料研究中取得重大進(jìn)展,材料研究人員正在致力于研發(fā)更輕、更堅(jiān)固、更耐高溫的材料。這些材料的研發(fā)不只可以提高產(chǎn)品的性能和可靠性,還可以為科研實(shí)驗(yàn)人員提供可靠的非接觸式應(yīng)變測量解決方案,從而增強(qiáng)科研實(shí)驗(yàn)室的創(chuàng)新能力,以滿足應(yīng)用材料科學(xué)快速發(fā)展的需求。在高溫材料測試實(shí)驗(yàn)室中,對新材料的性能測試是非常重要的。因此,在測量設(shè)備、數(shù)據(jù)收集和分析計(jì)算等方面,實(shí)驗(yàn)數(shù)據(jù)的高可靠性至關(guān)重要。光學(xué)非接觸應(yīng)變測量技術(shù)是一種非常有效的方法,可以實(shí)時、準(zhǔn)確地測量材料在高溫環(huán)境下的應(yīng)變情況。這種測量方法不只可以避免傳統(tǒng)接觸式測量方法可能引起的干擾和損傷,還可以提供更全部、更精確的數(shù)據(jù)。光學(xué)非接觸應(yīng)變測量技術(shù)基于光學(xué)原理,通過測量材料表面的形變來推導(dǎo)出應(yīng)變信息。這種方法可以應(yīng)用于各種材料,包括金屬、陶瓷、復(fù)合材料等,并且可以在高溫環(huán)境下進(jìn)行測量。通過使用高分辨率的相機(jī)和先進(jìn)的圖像處理算法,可以實(shí)現(xiàn)對材料表面形變的精確測量,從而得到準(zhǔn)確的應(yīng)變數(shù)據(jù)。數(shù)據(jù)處理是光學(xué)非接觸應(yīng)變測量中非常重要的一步,能夠提取有用信息并對測量結(jié)果進(jìn)行分析和解釋。四川VIC-2D非接觸應(yīng)變系統(tǒng)
光學(xué)非接觸應(yīng)變測量方法是一種用于測量物體應(yīng)變的技術(shù)。其中,光纖光柵傳感器和激光多普勒測振法是兩種常用的光學(xué)測量方法。光纖光柵傳感器是一種基于光纖光柵原理的光學(xué)測量方法。它通過在光纖中引入光柵結(jié)構(gòu),利用光柵對光信號的散射和反射來測量應(yīng)變。當(dāng)物體受到應(yīng)變時,光纖中的光柵結(jié)構(gòu)會發(fā)生微小的形變,從而改變光信號的散射和反射特性。通過測量光信號的變化,可以準(zhǔn)確地計(jì)算出物體的應(yīng)變情況。光纖光柵傳感器具有高靈敏度、高精度和遠(yuǎn)程測量等優(yōu)點(diǎn),適用于對復(fù)雜結(jié)構(gòu)和不便接觸的物體進(jìn)行應(yīng)變測量。激光多普勒測振法是一種基于多普勒效應(yīng)的光學(xué)測量方法。它利用激光光源照射在物體表面上,通過對反射光的頻率變化進(jìn)行分析來測量應(yīng)變。當(dāng)物體受到應(yīng)變時,物體表面的運(yùn)動速度會發(fā)生變化,從而導(dǎo)致反射光的頻率發(fā)生變化。通過測量反射光的頻率變化,可以準(zhǔn)確地計(jì)算出物體的應(yīng)變情況。激光多普勒測振法具有高精度和高靈敏度等優(yōu)點(diǎn),適用于對動態(tài)應(yīng)變進(jìn)行測量。這兩種光學(xué)非接觸應(yīng)變測量方法在工程領(lǐng)域中得到了普遍的應(yīng)用。它們不只可以提供準(zhǔn)確的應(yīng)變測量結(jié)果,還可以避免對物體造成損傷或干擾。浙江VIC-Gauge 2D視頻引伸計(jì)應(yīng)變測量系統(tǒng)與傳統(tǒng)的接觸式應(yīng)變測量方法相比,光學(xué)非接觸應(yīng)變測量不需要直接接觸物體表面,避免了對物體的破壞。
通過采用相似材料結(jié)構(gòu)模型實(shí)驗(yàn)的方法,我們可以研究鋼筋混凝土框架結(jié)構(gòu)在強(qiáng)烈地震作用下的行為。利用數(shù)字散斑的光學(xué)非接觸應(yīng)變測量方式,我們可以獲取模型表面的三維全場位移和應(yīng)變數(shù)據(jù)。然而,傳統(tǒng)的應(yīng)變計(jì)作為應(yīng)變測量工具存在一些問題。首先,應(yīng)變計(jì)的貼片過程非常繁瑣,需要精確地將應(yīng)變計(jì)貼在被測物體表面。這個過程需要耗費(fèi)大量時間和精力,并且容易出現(xiàn)貼片不牢固的情況,從而影響測量精度。其次,應(yīng)變計(jì)的測量精度嚴(yán)重依賴于貼片的質(zhì)量。如果貼片不完全貼合或存在空隙,就會導(dǎo)致測量結(jié)果的偏差。這對于需要高精度測量的實(shí)驗(yàn)來說是一個嚴(yán)重的問題。此外,應(yīng)變計(jì)對環(huán)境溫度非常敏感。溫度的變化會導(dǎo)致應(yīng)變計(jì)的性能發(fā)生變化,從而影響測量結(jié)果的準(zhǔn)確性。因此,在進(jìn)行實(shí)驗(yàn)時需要嚴(yán)格控制環(huán)境溫度,增加了實(shí)驗(yàn)的難度和復(fù)雜性。另外,應(yīng)變計(jì)無法進(jìn)行全場測量,只能測量貼片位置的應(yīng)變。這意味著我們無法捕捉到關(guān)鍵位置的變形出現(xiàn)的初始位置。當(dāng)框架結(jié)構(gòu)發(fā)生較大范圍的變形或斷裂時,應(yīng)變計(jì)容易損壞,從而影響測試數(shù)據(jù)的質(zhì)量。
光學(xué)應(yīng)變測量是一種常用的非接觸式測量方法,主要用于測量物體的應(yīng)變分布。它可以應(yīng)用于材料力學(xué)、結(jié)構(gòu)工程、生物醫(yī)學(xué)等領(lǐng)域,為研究物體的力學(xué)性質(zhì)和結(jié)構(gòu)變化提供重要的定量信息。光學(xué)應(yīng)變測量的原理是利用光學(xué)干涉的原理,通過測量物體表面的光學(xué)路徑差來獲得應(yīng)變信息。當(dāng)物體受到外力作用時,會引起物體表面的形變,從而改變光的傳播路徑,進(jìn)而產(chǎn)生干涉現(xiàn)象。通過測量干涉圖案的變化,可以得到物體表面的應(yīng)變分布。光學(xué)應(yīng)變測量的優(yōu)點(diǎn)是非接觸式測量,不會對被測物體造成損傷,同時具有高精度和高靈敏度。它可以實(shí)時監(jiān)測物體的應(yīng)變狀態(tài),對于研究材料的力學(xué)性質(zhì)和結(jié)構(gòu)變化具有重要意義。在結(jié)構(gòu)工程中,可以用于監(jiān)測建筑物、橋梁等結(jié)構(gòu)的應(yīng)變分布,以及評估其安全性能。在生物醫(yī)學(xué)領(lǐng)域,可以用于測量人體組織的應(yīng)變分布,研究生物力學(xué)特性和疾病診斷。與光學(xué)應(yīng)變測量相比,光學(xué)干涉測量主要用于測量物體表面的形變。它可以應(yīng)用于光學(xué)元件的制造、光學(xué)鏡面的檢測、光學(xué)薄膜的質(zhì)量控制等領(lǐng)域。光學(xué)干涉測量通過測量物體表面的形變來獲得物體形狀和表面質(zhì)量的定性信息。它可以檢測物體表面的微小形變,對于研究物體的形狀變化和表面質(zhì)量具有重要意義。光學(xué)非接觸應(yīng)變測量利用全息干涉術(shù)或激光散斑術(shù)將物體表面的應(yīng)變信息轉(zhuǎn)化為光的干涉或散斑圖案。
在當(dāng)今注重安全的社會中,應(yīng)變測量變得越來越重要。應(yīng)變是一個關(guān)鍵的物理量,它描述了物體在外力和非均勻溫度場等因素作用下局部的相對變形程度。應(yīng)變測量是機(jī)械結(jié)構(gòu)和機(jī)械強(qiáng)度分析中的重要手段,也是確保機(jī)械設(shè)備正常運(yùn)行的關(guān)鍵方法。在航空航天、工程機(jī)械、通用機(jī)械以及道路交通等領(lǐng)域,應(yīng)變測量都得到了普遍的應(yīng)用。應(yīng)變測量有多種方法,每種方法都對應(yīng)著不同的傳感器。常見的應(yīng)變測量傳感器包括電阻應(yīng)變片、振弦式應(yīng)變傳感器、手持應(yīng)變儀、千分表引伸計(jì)和光纖布拉格光柵傳感器等。其中,電阻應(yīng)變片是應(yīng)用較普遍的一種,因?yàn)樗哂懈哽`敏度、快速響應(yīng)、低成本、便于安裝、輕巧和小標(biāo)距等特點(diǎn)。光學(xué)非接觸應(yīng)變測量是一種新興的測量方法,它利用光學(xué)原理來測量物體的應(yīng)變。這種方法不需要直接接觸被測物體,因此可以避免傳統(tǒng)測量方法中可能引起的干擾和損傷。光學(xué)非接觸應(yīng)變測量主要依靠光纖布拉格光柵傳感器來實(shí)現(xiàn)。光纖布拉格光柵傳感器是一種基于光纖中的布拉格光柵原理的傳感器,它可以通過測量光纖中的光頻移來確定應(yīng)變的大小。全息干涉術(shù)和激光散斑術(shù)是常用的光學(xué)非接觸應(yīng)變測量方法,具有高精度、高靈敏度和非接觸的特點(diǎn)。廣東光學(xué)非接觸變形測量
現(xiàn)代光學(xué)應(yīng)變測量設(shè)備利用高精度的光學(xué)元件和先進(jìn)的信號處理技術(shù),可以達(dá)到亞微米級的測量精度。四川VIC-2D非接觸應(yīng)變系統(tǒng)
在塑性材料研究中,三維應(yīng)變測量技術(shù)是一項(xiàng)非常重要的工具。這項(xiàng)技術(shù)采用可移動的非接觸測量頭,可以方便地應(yīng)用于靜態(tài)、動態(tài)、高速和高溫等測量環(huán)境,并能詳細(xì)測量材料的復(fù)雜特性。與傳統(tǒng)的應(yīng)變計(jì)測量相比,三維應(yīng)變測量技術(shù)能夠提供更詳細(xì)的數(shù)據(jù)信息,可用于數(shù)字仿真的更詳細(xì)對比和評價(jià)。光學(xué)三維測量技術(shù)結(jié)合了光、電、計(jì)算機(jī)等技術(shù)的優(yōu)勢,具有非接觸性、無破壞性、高精度和高分辨率以及快速測量的特點(diǎn),在彈性塑性材料等特殊測量領(lǐng)域備受關(guān)注。該技術(shù)通過使用光學(xué)傳感器和相機(jī)等設(shè)備,可以實(shí)時捕捉材料表面的形變信息,并將其轉(zhuǎn)化為數(shù)字化的三維應(yīng)變數(shù)據(jù)。在材料的力學(xué)實(shí)驗(yàn)中,三維應(yīng)變測量技術(shù)可以應(yīng)用于多種實(shí)驗(yàn)方法,如杯突實(shí)驗(yàn)、抗拉實(shí)驗(yàn)、拉彎實(shí)驗(yàn)和剪切實(shí)驗(yàn)。通過測量材料在不同加載條件下的應(yīng)變分布,可以深入了解材料的力學(xué)性能和變形行為。這些數(shù)據(jù)對于材料的設(shè)計(jì)和優(yōu)化具有重要意義。四川VIC-2D非接觸應(yīng)變系統(tǒng)