隨著大模型在各個行業(yè)的應用,智能客服也得以迅速發(fā)展,為企業(yè)、機構(gòu)節(jié)省了大量人力、物力、財力,提高了客服效率和客戶滿意度。那么,該如何選擇合適的智能客服解決方案呢?
1、自動語音應答技術(AVA)是否成熟自動語音應答技術可以實現(xiàn)自動接聽電話、自動語音提示、自動語音導航等功能。用戶可以通過語音識別和語音合成技術與AI客服進行溝通交流,并獲取準確的服務。因此,在選擇智能客服解決方案時,需要考慮AVA技術的成熟度以及語音識別準確度。
2、語義理解和自然語言處理技術智能客服在接收到用戶的語音指令后,需要對用戶的意圖進行準確判斷。智能客服系統(tǒng)通過深度學習、語料庫等技術,將人類語言轉(zhuǎn)化為機器可處理的形式,從而實現(xiàn)對用戶話語的準確理解和智能回復。
3、智能客服機器人的學習能力智能客服的機器學習技術將用戶的歷史數(shù)據(jù)與基于AI算法的預測分析模型相結(jié)合。這樣,智能客服就能對用戶的需求、偏好和行為做出更加準確的分析和預測,并相應做出更準確和迅速的回復。 數(shù)據(jù)發(fā)展已讓醫(yī)療行業(yè)真正進入大數(shù)據(jù)人工智能時代,在對傳統(tǒng)的數(shù)據(jù)處理、數(shù)據(jù)挖掘技術形成巨大挑戰(zhàn)。上海智能客服大模型怎么應用
傳統(tǒng)的知識庫搜索系統(tǒng)是基于關鍵詞匹配進行的,缺少對用戶問題理解和答案二次處理的能力。
杭州音視貝科技公司探索使用大語言模型,通過其對自然語言理解和生成的能力,揣摩用戶意圖,并對原始知識點進行匯總、整合,生成更準確的回答。其具體操作思路是:
首先,使用傳統(tǒng)搜索技術構(gòu)建基礎知識庫查詢,提高回答的可控性;
其次,接入大模型,讓其發(fā)揮其強大的自然語言處理能力,對用戶請求進行糾錯,提取關鍵點等預處理,實現(xiàn)更精細的“理解”,對輸出結(jié)果在保證正確性的基礎上進行分析、推理,給出正確答案。私域知識庫解決不了問題,可以轉(zhuǎn)為人工處理,或接入互聯(lián)網(wǎng),尋求答案,系統(tǒng)會對此類問題進行標注,機器強化學習。 浙江垂直大模型應用場景有哪些大模型的長處在于能夠找到新的解法,幫助解決新問題,解決以后可以在狹窄領域產(chǎn)生大量數(shù)據(jù),訓練小模型。
大模型訓練過程復雜且成本高主要是由以下幾個因素導致的:
1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計算資源來存儲和處理,增加了訓練過程的復雜性和成本。
2、需要大規(guī)模訓練數(shù)據(jù):為了訓練大模型,需要收集和準備大規(guī)模的訓練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識,需要耗費大量時間和人力成本來收集、清理和標注。同時,為了獲得高質(zhì)量的訓練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓練過程變得更為復雜和昂貴。
3、需要大量的計算資源:訓練大模型需要大量的計算資源,包括高性能的CPU、GPU或者TPU集群。這是因為大模型需要進行大規(guī)模的矩陣運算、梯度計算等復雜的計算操作,需要更多的并行計算能力和存儲資源。購買和配置這樣的計算資源需要巨額的投入,因此訓練成本較高。
4、訓練時間較長:由于大模型參數(shù)量巨大和計算復雜度高,訓練過程通常需要較長的時間。訓練時間的長短取決于數(shù)據(jù)集的大小、計算資源的配置和算法的優(yōu)化等因素。長時間的訓練過程不僅增加了計算資源的利用成本,也會導致周期性的停機和網(wǎng)絡傳輸問題,進一步加大了訓練時間和成本。
人工智能大模型的發(fā)展,會給我們的生活帶來哪些改變呢?
其一,引發(fā)計算機算力的革新。大模型參數(shù)量的增加導致訓練過程的計算需求呈現(xiàn)指數(shù)級增長,高性能計算機和分布式計算平臺的普及,將成為支持更大規(guī)模的模型訓練和迭代的重要方式。
其二,將引發(fā)人工智能多模態(tài)、多場景的革新。大模型利用多模態(tài)數(shù)據(jù)進行跨模態(tài)學習,從而提升其在多個感知任務上的性能和表現(xiàn)。
其三,通過結(jié)合多模態(tài)數(shù)據(jù)和智能算法,大模型能夠賦能多個行業(yè),為行業(yè)提質(zhì)增效提供助力,推動數(shù)據(jù)與實體的融合,改變行業(yè)發(fā)展格局。在法律領域,大模型可以作為智能合同生成器,根據(jù)用戶的需求和規(guī)范,自動生成合法和合理的合同文本;在娛樂領域,大模型可以作為智能劇本編劇,根據(jù)用戶的喜好和風格,自動生成有趣和吸引人的劇本故事;在工業(yè)領域,大模型可以作為智能質(zhì)量控制器,根據(jù)生產(chǎn)數(shù)據(jù)和標準,自動檢測和糾正產(chǎn)品質(zhì)量問題;在教育領域,大模型可以作為智能學習平臺,根據(jù)知識圖譜和學習路徑,自動推薦和組織學習資源。 隨著人工智能在情感識別與深度學習等技術領域的開拓,智能客服的功能方向?qū)⒃絹碓綄拸V、多樣。
大模型在品牌方的落地,大家寄予希望的就是虛擬導購和數(shù)字人導購兩個場景。虛擬導購,從傳統(tǒng)的貨架式電商到直播電商,再到如今出海的場景下的對話式電商,在這個對話的過程當中實現(xiàn)了通過基于選擇等商品進行商品,再到具體下單的一個全流程,是區(qū)別于傳統(tǒng)電商之外新的一種電商形式。數(shù)字人導購。大模型加持的新一代數(shù)字人交互能力會更強,也可以促成新的IP的成形。這兩項是我們看到品牌商預期比較高,也是希望重點去落地的兩個方向。從2022年開始,以ChatGPT為主的大模型將客戶聯(lián)絡帶入了全新的發(fā)展階段。上海深度學習大模型國內(nèi)項目有哪些
2020-2025 年,全球數(shù)據(jù)平均增速預計達到23%。而且數(shù)據(jù)是越用越多,大量企業(yè)的數(shù)字化,不斷產(chǎn)生更多的數(shù)據(jù)。上海智能客服大模型怎么應用
大模型是指在機器學習和深度學習領域中,具有龐大參數(shù)規(guī)模和復雜結(jié)構(gòu)的模型。這些模型通常包含大量的可調(diào)整參數(shù),用于學習和表示輸入數(shù)據(jù)的特征和關系。大模型的出現(xiàn)是伴隨著計算能力的提升,數(shù)據(jù)規(guī)模的增大,模型復雜性的增加,具體來說有以下三點:首先,隨著計算硬件的不斷進步,如GPU、TPU等的出現(xiàn)和性能提升,能夠提供更強大的計算能力和并行計算能力,使得訓練和部署大型模型變得可行。其次,隨著數(shù)據(jù)規(guī)模的不斷增長,獲取和處理大規(guī)模數(shù)據(jù)集已經(jīng)成為可能,我們可以利用更多的數(shù)據(jù)來訓練模型,更多的數(shù)據(jù)能夠提供更豐富的信息,有助于訓練更復雜、更準確的模型。大模型通常由更多的層次和更復雜的結(jié)構(gòu)組成。例如,深度神經(jīng)網(wǎng)絡(DNN)和變換器(Transformer)是常見的大模型結(jié)構(gòu),在自然語言處理和計算機視覺領域取得了重大突破。 上海智能客服大模型怎么應用