影響氮化鋁陶瓷熱導率的因素:致密度:根據(jù)氮化鋁的熱傳導性能,低致密度的樣品存在的大量氣孔,會影響聲子的散射,降低其平均自由程,進而降低氮化鋁陶瓷的熱導率。同時,低致密度的樣品其機械性能也可能達不到相關應用要求。因此,高致密度是氮化鋁陶瓷具有高熱導率的前提。顯微結構:氮化鋁陶瓷的顯微組織結構與其熱力學性能有著一一對應,顯微結構包括晶粒尺寸、形貌和晶界第二相的含量及分布等。實際的氮化鋁陶瓷為多相組成的多晶體,它主要由氮化鋁晶相、鋁酸鹽第二相(晶界相)以及氣孔等缺陷組成。除了對氮化鋁的晶格缺陷進行研究外,許多人還對氮化鋁的晶粒、晶界形貌、晶界相的組成、性質、含量、分布、以及它們與熱導率的關系進行了較廣研究,一般認為鋁酸鹽第二相的分布對熱導率的影響很為重要。氮化鋁粉體的制備工藝主要有直接氮化法和碳熱還原法。多孔氮化鋁
氮化鋁陶瓷低溫燒結助劑的選擇:在燒結過程中通過添加一些低熔點的燒結助劑,可以在氮化鋁燒結過程中產生液相,促進氮化鋁胚體的致密燒結。此外,一些燒結助劑除了能夠產生液相促進燒結,還能夠與氮化鋁晶格中的氧雜質反應,起到去除氧雜質凈化晶格的作用,從而提高AlN陶瓷的熱導性能。然而,燒結助劑不能盲目的添加,添加的量也要適宜,否則可能會產生不利的作用,燒結助劑會引入第二相,第二相的分布控制對熱導率影響較大。經(jīng)研究,在選擇氮化鋁陶瓷低溫燒結助劑時應參照以下幾點:添加劑熔點較低,能夠在較低的燒結溫度下形成液相,通過液相促進燒結;添加劑能夠與Al2O3反應,去除氧雜質,凈化AlN晶格,進而提高熱導率;添加劑不與AlN反應,避免缺陷的產生;添加劑不會誘發(fā)AlN發(fā)生分解和氧化產生Al2O3和AlON,避免氮化鋁陶瓷熱導率急劇降低。湖州微米氮化鋁廠家直銷氮化鋁膜是指用氣相沉積、液相沉積、表面轉化或其它表面技術制備的氮化鋁覆蓋層。
氮化鋁在陶瓷在常溫和高溫下都具有良好的耐蝕性、穩(wěn)定性,在2450℃下才會發(fā)生分解,可以用作高溫耐火材料,如坩堝、澆鑄模具。氮化鋁陶瓷能夠不被銅、鋁、銀等物質潤濕以及耐鋁、鐵、鋁合金的溶蝕,可以成為良好的容器和高溫保護層,如熱電偶保護管和燒結器具;也可以抵御高溫腐蝕性氣體的侵蝕,用于制備氮化鋁陶瓷靜電卡盤這種重要的半導體制造裝備的零部件。由于氮化鋁對砷化鎵等熔鹽表現(xiàn)穩(wěn)定,用氮化鋁坩堝代替玻璃來合成砷化鎵半導體,可以消除來自玻璃中硅的污染,獲得高純度的砷化鎵半導體。
氮化鋁于1877年合成。至1980年代,因氮化鋁是一種陶瓷絕緣體(聚晶體物料為 70-210 W?m?1?K?1,而單晶體更可高達 275 W?m?1?K?1 ),使氮化鋁有較高的傳熱能力,至使氮化鋁被大量應用于微電子學。與氧化鈹不同的是氮化鋁無毒。氮化鋁用金屬處理,能取代礬土及氧化鈹用于大量電子儀器。氮化鋁可通過氧化鋁和碳的還原作用或直接氮化金屬鋁來制備。氮化鋁是一種以共價鍵相連的物質,它有六角晶體結構,與硫化鋅、纖維鋅礦同形。此結構的空間組為P63mc。要以熱壓及焊接式才可制造出工業(yè)級的物料。物質在惰性的高溫環(huán)境中非常穩(wěn)定。在空氣中,溫度高于700℃時,物質表面會發(fā)生氧化作用。在室溫下,物質表面仍能探測到5-10納米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保護物質。但當溫度高于1370℃時,便會發(fā)生大量氧化作用。直至980℃,氮化鋁在氫氣及二氧化碳中仍相當穩(wěn)定。礦物酸通過侵襲粒狀物質的界限使它慢慢溶解,而強堿則通過侵襲粒狀氮化鋁使它溶解。物質在水中會慢慢水解。氮化鋁可以抵抗大部分融解的鹽的侵襲,包括氯化物及冰晶石〔即六氟鋁酸鈉〕。由于氮化鋁壓電效應的特性,氮化鋁晶體的外延性伸展也用於表面聲學波的探測器。
氮化鋁陶瓷的流延成型:料漿均勻流到或涂到支撐板上,或用刀片均勻的刷到支撐面上,形成漿膜,經(jīng)干燥形成一定厚度的均勻的素坯膜的一種料漿成型方法。流延成型工藝包括漿料制備、流延成型、干燥及基帶脫離等過程。溶劑和分散劑:高固相含量的流延漿料是流延成型制備高性能氮化鋁陶瓷的關鍵因素之一。溶劑和分散劑是高固相含量的流延漿料的關鍵。溶劑必須滿足以下條件:必須與其他添加成分相溶,如分散劑、粘結劑和增塑劑等;化學性質穩(wěn)定,不與粉料發(fā)生化學反應;對粉料顆粒的潤濕性能好;易于揮發(fā)與燒除;使用安全、衛(wèi)生且對環(huán)境污染小。直至980℃,氮化鋁在氫氣及二氧化碳中仍相當穩(wěn)定。成都納米氮化硼品牌
氮化鋁具有不受鋁液和其它熔融金屬及砷化鎵侵蝕的特性,特別是對熔融鋁液具有極好的耐侵蝕性。多孔氮化鋁
AIN氮化鋁陶瓷作為一種綜合性能優(yōu)良的新型陶瓷材料,因其氮化鋁陶瓷具有優(yōu)良的熱傳導性,可靠的電絕緣性,低的介電常數(shù)和介電損耗,無毒以及與硅相匹配的熱膨脹系數(shù)等一系列優(yōu)良特性,被認為是新一代高集成度半導體基片和電子器件封裝的理想材料。氮化鋁陶瓷可做成氮化鋁陶瓷基板,被較廣應用到散熱需求較高的領域,比如大功率LED模組,半導體等領域。高性能氮化鋁粉體是制備高熱導率氮化鋁陶瓷基片的關鍵,目前國外氮化鋁粉制造工藝已經(jīng)相當成熟,商品化程度也很高。但掌握高性能氮化鋁粉生產技術的廠家并不多,主要分布在日本、德國和美國。氮化鋁粉末作為制備陶瓷成品的原料,其純度、粒度、氧含量以及其它雜質的含量都對后續(xù)成品的熱導性能、后續(xù)燒結,成型工藝有重要影響,是很終成品性能優(yōu)異與否的基石。多孔氮化鋁